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This supplemental material is organized as follows. In Sec-
tion 1, we present all detailed proofs of our theories. Sec-
tion 2 then proves some extended theoretical results, includ-
ing the convergence of BDA for BLPs with nonsmooth LL
objective and the local convergence behaviors of BDA.

1. Detailed Proofs
1.1. Proof of Theorem 1

Basically, our proof method consists of two main steps:

(1) LL solution set property: For any ε > 0, there exists
k(ε) > 0 such that whenever K > k(ε),

sup
x∈X

dist(yK(x),S(x)) ≤ ε.

(2) UL objective convergence property: ϕ(x) is LSC on
X , and for each x ∈ X ,

lim
K→∞

ϕK(x)→ ϕ(x).

Theorem 1. Suppose both the above LL solution set and
UL objective convergence properties hold and let xK ∈
arg minx∈X ϕK(x). Then we have

(1) Any limit point x̄ of the sequence {xK} satisfies that
x̄ ∈ arg minx∈X ϕ(x).

(2) infx∈X ϕK(x)→ infx∈X ϕ(x) as K →∞.

Proof. Since X is compact, we can assume without loss of
generality that xK → x̄ ∈ X . For any ε > 0, there exists
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k(ε) > 0 such that whenever K > k(ε), we have

sup
x∈X

dist(yK(x),S(x)) ≤ ε

2L0
. (1)

Thus, for any x ∈ X , there exists y∗(x) ∈ S(x) such that

‖yK(x)− y∗(x)‖ ≤ ε

L0
. (2)

Therefore, for any x ∈ X , we have

ϕ(x) = inf
y∈S(x)

F (x,y)

≤ F (x,y∗(x))

≤ F (x,yK(x)) + L0‖yK(x)− y∗(x)‖
≤ ϕK(x) + ε.

(3)

This implies that, for any ε > 0, there exists k(ε) > 0 such
that whenever K > k(ε),it holds

ϕ(xK) ≤ ϕK(xK) + ε ≤ ϕK(x) + ε, ∀x ∈ X .

Taking K →∞ and by the LSC of ϕ, we have

ϕ(x̄) ≤ lim inf
K→∞

ϕ(xK)

≤ lim inf
K→∞

ϕK(xK) + ε

≤ lim
K→∞

ϕK(x) + ε = ϕ(x) + ε, ∀x ∈ X .

By taking ε→ 0, we have

ϕ(x̄) ≤ ϕ(x), ∀x ∈ X ,

which implies x̄ ∈ arg minx∈X ϕ(x).

We next show that infx∈X ϕK(x)→ infx∈X ϕ(x) as K →
∞. If this is not true, then there exist δ > 0 and sequence
{l} ⊆ N such that∣∣∣∣ inf

x∈X
ϕl(x)− inf

x∈X
ϕ(x)

∣∣∣∣ > δ, ∀l. (4)

For each l, there exists xl ∈ X such that

ϕl(xl) ≤ inf
x∈X

ϕl(x) + δ/2.
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Since X is compact, we can assume without loss of general-
ity that xl → x̃ ∈ X . For any ε > 0, there exists k(ε) > 0
such that whenever l > k(ε), the following holds

ϕ(xl) ≤ ϕl(xl) + ε

≤ inf
x∈X

ϕl(x) + δ/2 + ε

≤ ϕl(x) + δ/2 + ε, ∀x ∈ X .

By taking l→∞ and with the LSC of ϕ, we have

ϕ(x̃) ≤ lim inf
l→∞

ϕ(xl)

≤ lim inf
l→∞

(
inf
x∈X

ϕl(x)

)
+ δ/2 + ε

≤ lim sup
l→∞

(
inf
x∈X

ϕl(x)

)
+ δ/2 + ε

≤ ϕ(x) + δ/2 + ε, ∀x ∈ X .

Then, by taking ε→ 0, we have

inf
x∈X

ϕ(x) ≤ lim inf
l→∞

(
inf
x∈X

ϕl(x)

)
+ δ/2

≤ lim sup
l→∞

(
inf
x∈X

ϕl(x)

)
+ δ/2

≤ inf
x∈X

ϕ(x) + δ/2,

which implies a contradiction to Eq. (4). Thus we have
infx∈X ϕK(x)→ infx∈X ϕ(x) as K →∞.

1.2. Proof of Theorem 2

Lemma 1. Suppose F (x,y) is level-bounded in y locally
uniformly in x ∈ X . If S(x) is ISC on X , then ∪x∈X S̃(x)
is bounded.

Proof. We prove this result by providing a contradiction,
that is, we have {xt} ⊆ X and yt ∈ S̃(xt) such that
‖yt‖ → +∞. As X is compact, we can assume without
loss of generality that xt → x̄ ∈ X . Since F (x,y) is level-
bounded in y locally uniformly in x ∈ X , we must have
ϕ(xt) = F (xt,yt) → +∞. On the other hand, for any
ε > 0, let ȳ ∈ S(x̄) satisfy F (x̄, ȳ) ≤ ϕ(x̄) + ε. As F is
continuous at (x̄, ȳ), there exists δ0 > 0 such that

F (x,y) ≤ F (x̄, ȳ) + ε, ∀(x,y) ∈ Bδ0(x̄, ȳ).

As S(x) is ISC at x̄ relative to X , then it follows that there
exists

√
2

2 δ0 ≥ δ > 0 satisfying

S(x) ∩ B√2
2 δ0

(ȳ) 6= ∅, ∀x ∈ Bδ(x̄) ∩ X .

Therefore, for any x ∈ Bδ(x̄)∩X , there exists y ∈ S(x) sat-
isfying (x,y) ∈ Bδ0(x̄, ȳ) and thus F (x,y) ≤ F (x̄, ȳ)+ε.
Consequently, for any x ∈ Bδ(x̄) ∩ X , we have

ϕ(x) = min
y∈S(x)

F (x,y) ≤ F (x̄, ȳ) + ε = ϕ(x̄) + 2ε,

which contradicts to ϕ(xt)→∞.

Thanks to the continuity of f(x,y), we further have the
following result.

Lemma 2. Denote f∗(x) = miny f(x,y). If f(x,y) is
continuous on X × Rm, then f∗(x) is USC on X .

Proof. For any sequence {xt} ⊆ X satisfying xt → x̄ ∈
X , given any ε > 0, let ȳ ∈ Rm satisfy f(x̄, ȳ) ≤ f∗(x̄)+ε.
As f is continuous at (x̄, ȳ), there exists T > 0 such that

f∗(xt) ≤ f(xt, ȳ) ≤ f(x̄, ȳ)+ε ≤ f∗(x̄)+2ε, ∀t > T,

and thus
lim sup
t→∞

f∗(xt) ≤ f∗(x̄) + 2ε.

By taking ε → 0, we get lim supk→∞ f∗(xt) ≤ f∗(x̄).

In the following proposition, we derive properties on
{yK(x)} in the light of the general fact stated in (Sabach &
Shtern, 2017).

Proposition 1. Suppose Assumption 1 is satisfied and
let {yK} be the output generated as yk+1 = yk −(
αkd

F
k (x) + (1− αk)dfk(x)

)
, sl ∈ (0, 1/Lf ], su ∈

(0, 2/(LF + σ)],

αk = min {2γ/k(1− β), 1− ε} ,

with k ≥ 1, ε > 0, γ ∈ (0, 1], and

β =
√

1− 2suσLF /(σ + LF ).

Denote ỹK(x) = yK(x)− sl∇yf(x,yK(x)), and

Cy∗(x) = max

{
‖y0 − y∗(x)‖, su

1− β
‖∇yF (x,y∗(x))‖

}
,

with y∗(x) ∈ S̃(x) and x ∈ X . Then we have

‖yK(x)− y∗(x)‖ ≤ Cy∗(x),

‖yK(x)− ỹK(x)‖ ≤
2Cy∗(x)(J + 2)

K(1− β)
,

f(x, ỹK(x))− f∗(x) ≤
2C2

y∗(x)(J + 2)

K(1− β)sl
,

where J = b2/(1 − β)c. Furthermore, for any x ∈ X ,
{yK(x)} converges to S̃(x) as K →∞.

We next prove the uniform convergence of {ỹK(x)} toward-
s the solution set S(x) through the uniform convergence of
{f(x, ỹK(x))}.
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Proposition 2. Let Y ⊆ Rm be a bounded set and ε > 0.
If S(x) is ISC on X , then there exists δ > 0 such that for
any y ∈ Y ,

sup
x∈X

dist(y,S(x)) ≤ ε,

in case supx∈X {f(x,y)− f∗(x)} ≤ δ is satisfied.

Proof. We are going to prove this statement by a contra-
diction. We assume that there exist bounded set Y ⊆ Rm,
ε > 0, sequences {(xt,yt)} ⊆ X × Y and {δk} with
δk → 0 satisfying

f(xt,yt)− f∗(xt) ≤ δk and dist(yt,S(xt)) > ε.

Without loss of generality, we can assume that xt → x̄ ∈ X
and yt → ȳ ∈ Rm as t→∞. According to the continuity
of f and the USC of f∗ from Lemma 2, we have

0 ≤ f(x̄, ȳ)− f∗(x̄) ≤ lim inf
t→∞

f(xt,yt)− f∗(xt) ≤ 0,

which implies ȳ ∈ S(x̄). However, as dist(yt,S(xt)) >
ε, following from the ISC of S(x) at x̄ and Proposition 5.11
of (Rockafellar & Wets, 2009), we have

dist(ȳ,S(x̄)) ≥ lim sup
t→∞

dist(ȳ,S(xt))

= lim sup
t→∞

(
dist(yt,S(xt)) + ‖yt − ȳ‖

)
≥ lim inf

t→∞
dist(yt,S(xt)) ≥ ε,

which contradicts to ȳ ∈ S(x̄).

Combining Lemmas 1 and 2, together with Proposition 2,
the LL solution set property required in Theorem 1 can be
eventually derived. Let us now prove the LSC property of ϕ
on X in the following proposition.
Proposition 3. Suppose F (x,y) is level-bounded in y lo-
cally uniformly in x ∈ X . If S(x) is OSC at x ∈ X , then
ϕ(x) is LSC at x ∈ X .

Proof. We assume that there exists x̄ ∈ X satisfying xt →
x̄ as t→∞, then the following

lim inf
x→x̄

ϕ(x) < ϕ(x̄),

holds. Next, there exist ε > 0 and sequences xt → x̄ ∈ X
and yt ∈ S(xt) satisfying

F (xt,yt) ≤ ϕ(xt) + ε < ϕ(x̄)− ε.

Furthermore, since F (x,y) is level-bounded in y locally
uniformly in x ∈ X , we have that {yt} is bounded. Take a
subsequence {yν} of {yt} such that yν → ŷ and it follows
from the OSC of S that ŷ ∈ S(x̄). Then we have

ϕ(x̄) ≤ F (x̄, ŷ) ≤ lim sup
t→∞

F (xt,yt) = lim sup
t→∞

ϕ(xt)

≤ ϕ(x̄)− ε,

which implies a contradiction. Thus

ϕ(x̄) ≤ lim inf
x→x̄

ϕ(x)

and we get the conclusion.

Theorem 2. Suppose Assumption 1 is satisfied and
let {yK} be the output generated as yk+1 = yk −(
αkd

F
k (x) + (1− αk)dfk(x)

)
, sl ∈ (0, 1/Lf ], su ∈

(0, 2/(LF + σ)],

αk = min {2γ/k(1− β), 1− ε} ,

with k ≥ 1, ε > 0, γ ∈ (0, 1] and

β =
√

1− 2suσLF /(σ + LF ).

Assume further that S(x) is continuous on X . Then we have
that both the LL solution set and UL objective convergence
properties hold.

Proof. We first show that F (x,y) is level-bounded in y
locally uniformly in x ∈ X . For any x̄ ∈ X , let {xt} ⊆ X
with xt → x̄ and {yt} ∈ Rm with ‖yt‖ → +∞. Then,
with Assumption 1 we have

F (xt,yt) ≥F (xt,y1) + 〈∇yF (xt,y1),yt − y1〉

+
σ

2
‖yt − y1‖2.

As F (x, ·) : Rm → R is Lipschitz continuous with uniform
constant L0 for any x ∈ X , we have ‖∇yF (xt,y1)‖ ≤ L0.
Then, by the continuity of F , with xt → x̄ ∈ X , and
‖yt‖ → +∞, we have F (xt,yt)→ +∞. Thus F (x,y) is
level-bounded in y locally uniformly in x ∈ X . Then with
Proposition 3 and assumptions in Theorem 2, we get the
LSC property of ϕ on X . And according to Lemma 1, there
exists M > 0 such that Cy∗(x) ≤M for any y∗(x) ∈ S̃(x)
and x ∈ X . Following Proposition 1, there exists C > 0
such that for any x ∈ X we have

‖yK(x)‖ ≤ C, ∀K ≥ 0,

‖yK(x)− ỹK(x)‖ ≤ C

K
,

and
f(ỹK(x))− f∗(x) ≤ C

K
, ∀K ≥ 0.

Next, according to Proposition 2, for any ε > 0, there exists
k(ε) > 0 such that whenever K > max{2C/ε, k(ε)} we
have

sup
x∈X

dist(yK(x),S(x))

≤ ‖yK(x)− ỹK(x)‖+ sup
x∈X

dist(ỹK(x),S(x)) ≤ ε.

Then it follows from Proposition 1 that ϕK(x) → ϕ(x)
when K →∞ for any x ∈ X .
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1.3. Proof of Theorem 3

Lemma 3. Suppose S(x) is single-valued on X and As-
sumption 2 is satisfied. Then S(x) is continuous on X .

Proof. First, according to Proposition 4.4 of (Bonnans &
Shapiro, 2013), we know that if f(x,y) : Rn × Rm →
R is continuous on X × Rm, level-bounded in y locally
uniformly in x ∈ X , then f∗(x) is continuous on X , S(x)
is OSC onX and locally bounded at x̄. Thus, for any x̄ ∈ X ,
f∗(x) is locally bounded at x̄. As S(x) is a single-valued
mapping on X and S(x) is OSC at x̄ ∈ X and locally
bounded at x̄, Upon Proposition 5.20 of (Rockafellar &
Wets, 2009), we conclude that S(x) is ISC at x̄, and thus
continuous at x̄. This completes the proof.

Theorem 3. Suppose S(x) is single-valued on X and As-
sumption 2 is satisfied, {yK(x)} is uniformly bounded on
X , and {f(x,yK(x))} converges uniformly to f∗(x) on X
as K →∞. Then we have that both the LL solution set and
UL objective convergence properties hold.

Proof. First, we get the continuity of S(x) on X from Lem-
ma 3. Then, by Proposition 3, we obtain the LSC of ϕ(x) on
X . From Proposition 2 and Lemma 3, we have that for any
ε > 0, there exists k(ε) > 0 such that whenever K > k(ε),

sup
x∈X

dist(yK(x),S(x)) ≤ ε.

As S(x) is a single-valued mapping on X , we have
ϕK(x)→ ϕ(x) for any x ∈ X as K →∞.

In the following two propositions, we assume that f(x, ·) :
Rm → R is Lf -smooth and convex, sl ≤ 1/Lf .

Proposition 4. Let yK be the output generated as yk+1 =
yk − sl∇yf(x,yk). Then, it holds that

‖yK(x)− y∗(x)‖ ≤ ‖y0 − y∗(x)‖,

and

f(yK(x))− f∗(x) ≤ ‖y0 − y∗(x)‖2

2slK
,

with y∗(x) ∈ S(x) and x ∈ X .

Proof. This proposition can be directly obtained from The-
orem 10.21 and Theorem 10.23 of (Beck, 2017).

Then in the following proposition we can immediately verify
our required assumption on {f(x,yK(x))} in the absence
of the strong convexity property on the LL objective.

Proposition 5. Suppose that S(x) is single-valued on X
and Assumption 2 is satisfied. Let yK be the output gen-
erated as yk+1 = yk − sl∇yf(x,yk). Then {yK(x)}
is uniformly bounded on X and {f(x,yK(x))} converges
uniformly to f∗(x) on X as K →∞.

Proof. By the same arguments given in proof of Lemma 3,
we can show that S(x) is locally bounded at each point on
X under Assumption 2. As X is compact, thus ∪x∈XS(x)
is bounded. Then the conclusion follows from Proposition 4
directly.

2. Extended Theoretical Results
2.1. Nonsmooth LL Objective

It is well-known that a variety of nonsmooth regularization
techniques (e.g., `1-norm regularization) have been utilized
in learning and vision areas. So in this section, we briefly
discuss a potential extension of BDA for BLPs with the
nonsmooth LL objective, e.g.,

S(x) = arg min
y
h(x,y) = f(x,y) + g(x,y). (5)

Here we consider f as a function with the same properties
as that in our above analysis, while g is convex but not nec-
essarily smooth, w.r.t. y and continuous w.r.t. (x,y). Since
g is not necessarily differentiable w.r.t. y, these existing
gradient-based first-order BLP methods are not available for
this problem. Fortunately, we demonstrate that by slightly
modifying our inner updating rule, BDA can be directly
extended to address BLPs with the nonsmooth LL objective
in Eq. (5). Specifically, we first write the descent direction
of the LL subproblem as

dhk(x) = yk − proxslg(x,·)(yk − sl∇yf(x,yk)),

where proxslg(x,·) denotes the proximal operator w.r.t. the
nonsmooth function g(x, ·) and step size sl. Then by ag-
gregating dFk (x) and dhk(x), we derive a new Tk to handle
BLPs with the nonsmooth composite LL objective h, i.e.,

Tk(x,yk(x)) = yk−
(
αkd

h
k(x) + (1− αk)dFk (x)

)
, (6)

where αk ∈ (0, 1]. In fact, since explicitly estimating the
subgradient information of some proximal operators may
be computationally infeasible in practice, one may apply
automatic differentiation through the dynamical system with
approximation techniques (Wang et al., 2016; Rajeswaran
et al., 2019) to obtain dϕK

dx , where ϕK(x) = F (x,yK(x)).

We are now in the position to extend the converge proper-
ties of BDA for BLPs in Eq. (6) from smooth LL case to
nonsmooth LL case. Similar to the discussion in the smooth
case, our analysis could follow the following roadmap:

Step 1: Denoting S̃(x) = arg miny∈S(x) F (x,y) and fur-
ther h∗(x) = miny h(x,y), as extensions to Lemma 1 and
Lemma 2, we shall derive the boundedness of S̃(x) and the
USC of h∗(x) for the nonsmooth LL case, respectively. The
proofs are indeed straightforward and purely technical, thus
omitted here.
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Step 2: As an extension to Proposition 1 which focuses on
the smooth case, we may derive the following convergence
results regarding {yK(x)} in the light of the general fact
stated in (Sabach & Shtern, 2017).
Proposition 6. Suppose Assumption 1 is satisfied, g is con-
tinuous and convex w.r.t. y, and let {yK} be defined as in
Eq. (6), sl ∈ (0, 1/Lf ], su ∈ (0, 2/(LF + σ)],

αk = min {2γ/k(1− β), 1− ε} ,

with k ≥ 1, ε > 0, γ ∈ (0, 1] and

β =
√

1− 2suσLF /(σ + LF ).

Denoting

ỹK(x) = proxslg(x,·)(yK(x)− sl∇yf(x,yK(x))),

and

Cy∗(x) = max

{
‖y0 − y∗(x)‖, su

1− β
‖∇yF (x,y∗(x))‖

}
,

with y∗(x) ∈ S̃(x) and x ∈ X . Then it holds that

‖yK(x)− y∗(x)‖ ≤ Cy∗(x),

‖yK(x)− ỹK(x)‖ ≤
2Cy∗(x)(J + 2)

K(1− β)
,

h(x, ỹK(x))− h∗(x) ≤
2C2

y∗(x)(J + 2)

K(1− β)sl
,

where J = b2/(1−β)c. Further, yK(x) converges to S̃(x)
as K →∞ for any x ∈ X .

Step 3: Taking a closer look at the proofs for Proposition 2
and Proposition 3, we observe that the techniques we used
barely rely on the smoothness of the LL objective. There-
fore, straightforward extensions of Proposition 2 and Propo-
sition 3 to the nonsmooth case can yield the desired uniform
convergence of ỹK(x) and the UL objective convergence,
respectively.

Step 4: Similar to the arguments in the proof of Theorem 2,
by combining Step 1 and Step 2, we eventually meet the LL
solution set and UL objective convergence properties, and
hence the analysis framework in Theorem 1 has been acti-
vated. Therefore, the same convergence results concerning
{xK}K∈N and {ϕK(x)} can be achieved as following.
Theorem 4. Suppose Assumption 1 is satisfied, g is con-
tinuous and convex w.r.t. y, and let {yK} be defined as in
Eq. (6), sl ∈ (0, 1/Lf ], su ∈ (0, 2/(LF + σ)],

αk = min {2γ/k(1− β), 1− ε} ,

with k ≥ 1, ε > 0, γ ∈ (0, 1] and

β =
√

1− 2suσLF /(σ + LF ).

Assume further that S(x) is nonempty for any x ∈ X and
S(x) is continuous on X . Then

(1) if xK is local minimum of ϕK(x) with uniform neigh-
borhood modulus δ > 0, we have any limit point x̄ of
the sequence {xK} is a local minimum of ϕ;

(2) if xK ∈ arg minx∈X ϕK(x), we have the same results
as in Theorem 1.

2.2. Local Convergence Results

Finally, we analyze the local convergence behaviors of BDA.
In fact, even if xK is a local minimum of ϕK(x) with
uniform neighborhood modulus δ > 0, we can still obtain
similar convergence results as that in Theorem 1. Such
properties are summarized in the following theorem.

Theorem 5. Suppose both the LL solution set and UL ob-
jective convergence properties (stated in Section 1.1) hold
and let xK be a local minimum of ϕK(x) with uniform
neighborhood modulus δ > 0. Then we have that any limit
point x̄ of the sequence {xK} is a local minimum of ϕ, i.e.,
there exists δ̃ > 0 such that

ϕ(x̄) ≤ ϕ(x), ∀x ∈ Bδ̃(x̄) ∩ X .

Proof. Since X is compact, we can assume without loss
of generality that xK → x̄ ∈ X and xK ∈ Bδ/2(x̄) by
considering a subsequence of {xK}. For any ε > 0, there
exists k(ε) > 0 such that whenever K > k(ε), we have

sup
x∈X

dist(yK(x),S(x)) ≤ ε

2L0
.

Thus, for any x ∈ X , there exists y∗(x) ∈ S(x) such that

‖yK(x)− y∗(x)‖ ≤ ε

L0
.

Therefore, for any x ∈ X , we have

ϕ(x) = inf
y∈S(x)

F (x,y)

≤ F (x,y∗(x))

≤ F (x,yK(x)) + L0‖yK(x)− y∗(x)‖
≤ ϕK(x) + ε.

This implies that, for any ε > 0, there exists k(ε) > 0 such
that whenever K > k(ε), we have

ϕ(xK) ≤ ϕK(xK) + ε ≤ ϕK(x) + ε, ∀x ∈ X .

Next, as xK is a local minimum of ϕK(x) with uniform
neighborhood modulus δ, it follows

ϕK(xK) ≤ ϕK(x), ∀x ∈ Bδ(xK) ∩ X .

Since Bδ/2(x̄) ⊆ Bδ/2+‖xk−x̄‖(xK) ⊆ Bδ(xK), we have
that for any ε > 0, ∀x ∈ Bδ/2(x̄)∩X , there exists k(ε) > 0
such that whenever K > k(ε),

ϕ(xK) ≤ ϕK(xK) + ε ≤ ϕK(x) + ε = ϕ(x) + ε.
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Taking K →∞ and by the LSC of ϕ, ∀x ∈ Bδ/2(x̄) ∩ X ,
we have

ϕ(x̄) ≤ lim inf
K→∞

ϕ(xK)

≤ lim inf
K→∞

ϕK(xK) + ε

≤ lim
K→∞

ϕK(x) + ε = ϕ(x) + ε.

By taking ε→ 0, we have

ϕ(x̄) ≤ ϕ(x), ∀x ∈ Bδ/2(x̄) ∩ X ,

which implies x̄ ∈ arg minx∈Bδ/2(x̄)∩X ϕ(x), i.e, x̄ is a
local minimum of ϕ.

References
Beck, A. First-order methods in optimization. SIAM, 2017.

Bonnans, J. F. and Shapiro, A. Perturbation analysis of
optimization problems. Springer Science & Business
Media, 2013.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In NeurIPS, pp.
113–124, 2019.

Rockafellar, R. T. and Wets, R. J.-B. Variational analysis.
Springer Science & Business Media, 2009.

Sabach, S. and Shtern, S. A first order method for solving
convex bilevel optimization problems. SIAM Journal on
Optimization, 27(2):640–660, 2017.

Wang, S., Fidler, S., and Urtasun, R. Proximal deep struc-
tured models. In NeurIPS, pp. 865–873, 2016.


