
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. A3932--A3956

FIFTH-ORDER A-WENO FINITE-DIFFERENCE SCHEMES BASED
ON A NEW ADAPTIVE DIFFUSION CENTRAL NUMERICAL FLUX\ast 

BAO-SHAN WANG\dagger , WAI SUN DON\dagger , NAVEEN K. GARG\ddagger , AND

ALEXANDER KURGANOV\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A new adaptive diffusion central numerical flux within the framework of fifth-order
characteristicwise alternative WENO-Z finite-difference schemes (A-WENO) with a modified local
Lax--Friedrichs (LLF) flux for the Euler equations of gas dynamics is introduced. The new numerical
flux adaptively adjusts the numerical diffusion coefficient present in the LLF flux. The coefficient
is estimated by a suitable Rankine--Hugoniot condition, which gives a more accurate estimation of
the local speed of propagation. To ensure robustness, lower and upper bounds of the coefficient are
obtained with the help of the convection-pressure splitting of the Jacobian. The proposed adaptive
A-WENO scheme is tested on several one- and two-dimensional benchmarks. The obtained results
demonstrate that the use of the adaptive diffusion central numerical flux enhances the resolution of
contact waves and improves significantly the resolution of fine-scale structures in the smooth areas
of the solution while capturing shocks and high gradients in an essentially nonoscillatory manner.
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1. Introduction. This paper is focused on numerical solutions of hyperbolic
systems of conservation laws. In the one-dimensional (1-D) case, these systems read
as

(1.1) \bfitU t + \bfitF (\bfitU )x = 0.

It is well-known that solutions of (1.1) may develop complicated wave structures that
include shock waves, rarefactions, and contact discontinuities even when the initial
data are smooth. It is, therefore, quite challenging to develop highly accurate, stable,
and robust numerical methods, which are supposed to have a sufficient (but not too
large) amount of numerical diffusion (ND) needed to stabilize computed solutions.
Finite-volume Godunov-type schemes are a popular tool that may achieve the goal;
see, e.g., the monographs [11, 18, 22, 31]. In the framework of Godunov-type schemes,
the solution is represented using its cell averages, which are used to obtain a global
in space (generically discontinuous) piecewise polynomial reconstruction needed to
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A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3933

evolve the cell averages in time using the integral form of the studied system of
conservation laws.

There are two popular classes of Godunov-type schemes: upwind and central
ones. The first-order upwind scheme is the Godunov scheme [12], which is based on
a first-order piecewise constant reconstruction and upwinding utilized by solving the
Riemann problems initiated at every time step at all of the cell interfaces. The order
of upwind methods can be increased by using higher-order piecewise polynomial (say,
piecewise linear for second-order schemes) reconstructions. This requires, however,
solving the generalized Riemann problems, which is a much more complicated task;
see, e.g., [3]. Nonoscillatory central schemes offer a much simpler alternative to the up-
wind ones. Godunov-type central schemes are constructed by shifting the space-time
control volumes in space in such a manner that the computed solution is averaged over
the Riemann fans so that no (generalized) Riemann problem solver is needed for time
evolution. The simplest Godunov-type central scheme is the staggered Lax--Friedrichs
scheme, whose order (and resolution) can be increased using proper piecewise polyno-
mial reconstructions; see [36], where the second-order staggered central scheme was
proposed.

Staggered central schemes, however, have quite large ND due to their staggered
grid structure. The amount of ND can be reduced by utilizing the information about
local speeds of propagation and making the spatial size of space-time control vol-
umes to be proportional to these speeds. This was done in [27], where second-order
nonstaggered central schemes were developed. The simplest version of these schemes
is the semidiscrete central scheme, whose first-order version coincides with the Ru-
sanov scheme [39], which is often referred to as a local Lax--Friedrichs (LLF) scheme.
Compared to their staggered counterparts, the nonstaggered central schemes are less
diffusive and thus more accurate. Moreover, they are more robust as their ND coeffi-
cients are not inversely proportional to the size of the time step; see [27] for details.

The accuracy of semidiscrete central schemes is determined by the order of the
piecewise polynomial reconstruction employed to compute the point values of \bfitU ,
needed to evaluate the numerical fluxes, and the order of the ODE solver used for the
time evolution. Third-order semidiscrete central schemes were derived in [25]. Higher-
order schemes can be obtained using higher-order ENO (see, e.g., [15, 16, 44, 45])
and WENO (see, e.g., [2, 4, 20, 35, 43]) reconstructions. Schemes that utilize ENO
(WENO) reconstructions are often referred to as ENO (WENO) schemes. These
schemes may be based on any numerical flux, but they are often based on the sim-
plest central (LLF) flux, which is very robust. Though the LLF flux is less accurate
than Riemann-problem-solver-based upwind fluxes, a very high accuracy is typically
achieved thanks to a very accurate reconstruction.

A drawback of ENO (WENO) schemes is that the reconstruction procedure be-
comes very complicated and computationally expensive in the multidimensional case.
A way to overcome this difficulty is to switch from the finite-volume to the finite-
difference scheme, for which a 1-D WENO reconstruction can be performed in every
space dimension. The first finite-difference WENO scheme was proposed in [20] and
then further developed in [1, 4, 5, 6, 17]. These schemes, however, are based on quite
diffusive flux splitting required to stabilize them, and this affects the quality of the
obtained results, which are typically not as accurate as the results computed using
finite-volume WENO schemes. The way of enhancing the resolution of finite-difference
WENO schemes was proposed in [21], where alternative WENO (A-WENO) schemes
were developed; also, see [34]. The main advantage of A-WENO schemes is that
they can employ standard finite-volume numerical fluxes (without any need in flux
splitting and related modifications), whose accuracy, in the context of finite-difference
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schemes, is limited to the second order, while a high order is achieved using the flux
Taylor expansion.

A-WENO schemes have been typically implemented using the LLF numerical
flux; see [33, 47]. In this paper, we develop an alternative, adaptive diffusion central
numerical flux and implement it in the framework of fifth-order A-WENO schemes.
The new numerical flux is based on the central Rankine--Hugoniot (R-H) schemes,
which were derived in [10, 19, 38]. These schemes utilize the R-H conditions at a
discrete level. This allows such schemes to capture steady discontinuities accurately,
but the central R-H schemes from [10, 19, 38] are not robust enough. Here, we consider
the Euler equations of gas dynamics and utilize the convection-pressure (C-P) flux
splitting from [49] to develop an adaptive modification of the central R-H flux. The
new flux is as robust as the LLF flux, and at the same time, it contains a substantially
smaller amount of ND. This is demonstrated on a number of challenging numerical
examples for both 1-D and two-dimensional (2-D) Euler equations.

The paper is organized as follows. In section 2, we briefly review the fifth-order
A-WENO schemes. In particular, in section 2.1, we describe the fifth-order WENO-Z
interpolation, which is used to design the proposed scheme. In section 3, we provide
a brief overview of semidiscrete central schemes and describe the central (LLF) flux,
which is modified in section 4, where we derive the new adaptive diffusion central
flux. In section 5, we present both 1-D (section 5.1) and 2-D (section 5.2) numerical
examples. Some concluding remarks can be found in section 6. Finally, the C-P flux
splitting used in the derivation of the proposed adaptive numerical flux is described
in Appendix A.

2. The fifth-order A-WENO schemes: A brief overview. We consider the
1-D system (1.1) on a certain interval covered with the uniform cells Ij := [xj - 1

2
, xj+ 1

2
]

of size \Delta x centered at xj = (xj - 1
2
+xj+ 1

2
)/2. Assuming that the point values \bfitU j(t) \approx 

\bfitU (xj , t) have been already computed at a certain time level t (for the sake of brevity,
we will omit the time dependence of all of the indexed quantities in most parts in
the rest of this paper). These point values are then evolved in time according to the
following semidiscretization:

(2.1)
d

dt
\bfitU j =  - 

\bfscrF j+ 1
2
 - \bfscrF j - 1

2

\Delta x
,

where \bfscrF j+ 1
2
are numerical fluxes, which are supposed to be designed in a way that

would make the right-hand side (RHS) of (2.1) to be equal to \bfitF (\bfitU (xj , t))x+\scrO 
\bigl( 
(\Delta x)5

\bigr) 
for smooth solutions.

According to the A-WENO approach (see [21, 33, 47]), the fifth-order numerical
flux is obtained using the sixth-order accurate Taylor expansion of \bfscrF (x) at x = xj+ 1

2

(see [44]) given by

(2.2) \bfscrF j+ 1
2
= \bfscrF FV

j+ 1
2
 - 1

24
(\Delta x)2(\bfitF xx)j+ 1

2
+

7

5760
(\Delta x)4(\bfitF xxxx)j+ 1

2
.

Here, \bfscrF FV
j+ 1

2
is the finite-volume numerical flux, which, in the case of the LLF flux and

its proposed modification, presented in sections 3 and 4, respectively, is a function
of the left- and right-sided point values of \bfitU at x = xj+ 1

2
. These one-sided point

values, denoted by \bfitU  - 
j+ 1

2

and \bfitU +
j+ 1

2

, respectively, are obtained using the WENO-Z

interpolation procedure [21, 33, 47], described in section 2.1.
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In order to ensure that the numerical flux in (2.2) is fifth-order accurate, the
approximations of the second and fourth derivatives of the flux \bfitF are computed
using the standard central finite differences of the fourth and the second order,
respectively:

(\bfitF xx)j+ 1
2
=

1

48(\Delta x)2
( - 5\bfitF j - 2 + 39\bfitF j - 1  - 34\bfitF j  - 34\bfitF j+1 + 39\bfitF j+2  - 5\bfitF j+3) ,

(\bfitF xxxx)j+ 1
2
=

1

2(\Delta x)4
(\bfitF j - 2  - 3\bfitF j - 1 + 2\bfitF j + 2\bfitF j+1  - 3\bfitF j+2 + \bfitF j+3) ,

where \bfitF j := \bfitF (\bfitU j).

2.1. The fifth-order WENO-Z interpolation. We now review the fifth-order
WENO-Z interpolation (see [7, 9, 21, 32, 33, 47]), which is used to compute the one-
sided point values \bfitU \pm 

j+ 1
2

required to evaluate the finite-volume numerical fluxes \bfscrF FV
j+ 1

2
.

In fact, we will only describe how to compute \bfitU  - 
j+ 1

2

, which will be obtained using the

stencil S5 := [xj - 2, . . . , xj+2], which is biased to the left of xj+ 1
2
. The point value

\bfitU +
j+ 1

2

will then be obtained using the mirror-symmetric (with respect to the target

point xj+ 1
2
) stencil.

One can perform either a componentwise or, preferably, a characteristicwise in-
terpolation. In the former case, we denote by Q := U (m) the mth component of the
conservative variable vector \bfitU . In the latter case, Q := (L\bfitU )(m) is the mth compo-
nent of the characteristic variable vector L\bfitU , where L is a matrix composed of the
Roe-averaged left eigenvectors of the Jacobian of the flux function at the cell interface
xj+ 1

2
; see [21] for details.

Given the point values \{ Qj\} , we will consider the three parabolic interpolants
\scrP k(x) obtained using the three point values Qj - 2+k, Qj - 1+k, and Qj+k on the cor-
responding substencils Sk := [xj - 2+k, xj - 1+k, xj+k] for k = 0, 1, and 2. Then, the
fifth-order WENO-Z interpolation procedure gives

Q - 
j+ 1

2

=

2\sum 
k=0

\omega k\scrP k(xj+ 1
2
),

where

\scrP 0(xj+ 1
2
) =

3

8
Qj - 2  - 

5

4
Qj - 1 +

15

8
Qj ,

\scrP 1(xj+ 1
2
) =  - 1

8
Qj - 1 +

3

4
Qj +

3

8
Qj+1,

\scrP 2(xj+ 1
2
) =

3

8
Qj +

3

4
Qj+1  - 

1

8
Qj+2.

The (nonlinear) weights \omega k of the fifth-order WENO-Z interpolant are obtained as
follows (see [4, 5, 6]):

\alpha k = dk

\biggl[ 
1 +

\biggl( 
\tau 5

\beta k + \varepsilon 

\biggr) p \biggr] 
, \omega k =

\alpha k

\alpha 0 + \alpha 1 + \alpha 2
.

Here, d0 = 1/16, d1 = 5/8, and d2 = 5/16 are the linear (optimal) weights, which yield
the (optimal) fifth-order accuracy for a smooth function;

\beta k =

2\sum 
\ell =1

(\Delta x)2\ell  - 1

\int x
j+1

2

x
j - 1

2

\biggl( 
\partial \ell \scrP k

\partial x\ell 

\biggr) 2

dx, k = 0, 1, 2,
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are the (local lower order) smoothness indicators, which measure the smoothness of
Q(x) in each substencil (the explicit expressions for the smoothness indicators \beta k

can be found in [4, 20, 21]); \tau 5 = | \beta 2  - \beta 0| is the global (optimal order) smoothness
indicator, which has a leading truncation error of order \scrO 

\bigl( 
(\Delta x)5

\bigr) 
; p is the power

parameter; and \varepsilon > 0 is the sensitivity parameter used to avoid a division by zero. In
all of the numerical experiments presented in section 5, we have used \varepsilon = 10 - 12 and
p = 2.

We note that if Q(x) is a smooth function in the stencil S5, then the smoothness
indicators \beta k, k = 1, 2, 3, are all of about the same order and one can easily verify
that in this case, Q - 

j+ 1
2

= Q(xj+ 1
2
) +\scrO 

\bigl( 
(\Delta x)5

\bigr) 
. At the same time, if a substencil Sk

contains a discontinuity, the corresponding \beta k will be much larger than those of other
two smooth substencils, and hence the associated weight \alpha k will be correspondingly
much smaller than the others and will tend to zero, which would lead to a second-
order and smoother biased polynomial approximation. This way, an essentially non-
oscillatory property of the WENO-Z interpolation procedure is achieved.

Remark 1. Even though the componentwise WENO interpolation is essentially
nonoscillatory, the resulting A-WENO scheme may still be prone to some numerical
oscillations. As demonstrated in [37], these types of oscillations can be greatly reduced
by performing the interpolation in the local characteristic variables rather than in the
original, conservative ones. In all of the numerical examples presented in section 5,
the characteristicwise WENO-Z interpolation is used to compute the \bfitU \pm 

j+ 1
2

.

3. Semidiscrete central schemes: A brief overview. In this section, a brief
description of the semidiscrete finite-volume central schemes for (1.1) from [27] is
given. These schemes are based on the finite-volume central fluxes \bfscrF FV

j+ 1
2
, which are

the key ingredients of the A-WENO schemes studied here; see (2.2).
As in all finite-volume methods, the computed solution is realized in terms of its

cell averages \bfitU j(t) \approx 1
\Delta x

\int 
Ij
\bfitU (x, t) dx. They are assumed to be known at a given time

t and are then evolved in time according to the following central semidiscretization
rigorously derived in [27]:

(3.1)
d

dt
\bfitU j =  - 

\bfscrF FV
j+ 1

2
 - \bfscrF FV

j - 1
2

\Delta x
,

where
(3.2)

\bfscrF FV
j+ 1

2
=

1

2

\Bigl[ 
\bfitF 

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
+ \bfitF 

\Bigl( 
\bfitU +

j+ 1
2

\Bigr) \Bigr] 
 - 1

2
aj+ 1

2
\Delta \bfitU j+ 1

2
, \Delta \bfitU j+ 1

2
:= \bfitU +

j+ 1
2

 - \bfitU  - 
j+ 1

2

,

are the numerical fluxes. The accuracy of the numerical flux (3.2) is determined by
the accuracy of the piecewise polynomial reconstruction employed to evaluate \bfitU \pm 

j+ 1
2

;

see, e.g., [23] and references therein. Finally, the ND coefficient aj+ 1
2
in (3.2) is the

maximum local speed of propagation, which is obtained from the spectral radius of
the Jacobian A(\bfitU ) = \partial \bfitF 

\partial \bfitU .
For example, let us consider the Euler equations of gas dynamics, which in the

1-D case read as

(3.3)

\rho t + (\rho u)x = 0,

mt + (\rho u2 + p)x = 0,

Et + ((E + p)u)x = 0.
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Here, \rho is the density of the fluid, u is the velocity, m = \rho u is the momentum, p is the
pressure, E is the total energy, which is a sum of internal and kinetic energies given
by E = p

\gamma  - 1 +
1
2\rho u

2, and \gamma is the ratio of specific heats, which is constant in the case

of ideal gas. In order to design the central scheme for (3.3), the point values \rho \pm 
j+ 1

2

,

m\pm 
j+ 1

2

, and E\pm 
j+ 1

2

at the cell boundary xj+ 1
2
are interpolated and the ND coefficient

aj+ 1
2
is estimated by

(3.4) aj+ 1
2
= max

\Bigl\{ \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| + c+
j+ 1

2

,
\bigm| \bigm| \bigm| u - 

j+ 1
2

\bigm| \bigm| \bigm| + c - 
j+ 1

2

\Bigr\} 
,

where c :=
\sqrt{} 

\gamma p/\rho is the speed of sound and

(3.5) u\pm 
j+ 1

2

=
m\pm 

j+ 1
2

\rho \pm 
j+ 1

2

, c\pm 
j+ 1

2

=

\sqrt{}    \gamma p\pm 
j+ 1

2

\rho \pm 
j+ 1

2

, p\pm 
j+ 1

2

= (\gamma  - 1)

\left[   E\pm 
j+ 1

2

 - 

\Bigl( 
m\pm 

j+ 1
2

\Bigr) 2

2\rho \pm 
j+ 1

2

\right]   .

4. Adaptive diffusion central flux. In this section, we derive an adaptive
diffusion modification of the central (LLF) flux (3.2), (3.4), (3.5) for the compressible
Euler equations (3.3). Our goal is to reduce the ND by replacing the ND coefficient
aj+ 1

2
given by (3.4) with a smaller adaptive ND coefficient \alpha j+ 1

2
, which will represent

a more accurate estimate on the maximum local speeds of propagation without solving
the generalized Riemann problem or trying to incorporate any upwinding information.
The adaptive LLF numerical flux,

(4.1) \bfscrF FV
j+ 1

2
=

1

2

\Bigl[ 
\bfitF 

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
+ \bfitF 

\Bigl( 
\bfitU +

j+ 1
2

\Bigr) \Bigr] 
 - 1

2
\alpha j+ 1

2
\Delta \bfitU j+ 1

2
,

is designed using a suitable discrete R-H condition and the C-P flux splitting described
in Appendix A. Based on the considered flux splitting, we first split the numerical
flux into the convection and pressure parts as follows:

\bfscrF FV
j+ 1

2
= \bfscrF c

j+ 1
2
+\bfscrF p

j+ 1
2

,

where

(4.2) \scrF \ell ,(i)

j+ 1
2

=
1

2

\Bigl[ 
F \ell ,(i)

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
+ F \ell ,(i)

\Bigl( 
\bfitU +

j+ 1
2

\Bigr) \Bigr] 
 - 1

2
\alpha \ell 
j+ 1

2
\Delta U

(i)

j+ 1
2

, \ell \in \{ c,p\} ,

for the ith component of the numerical fluxes \bfscrF c
j+ 1

2
and \bfscrF p

j+ 1
2

. Our main goal is

to evaluate \alpha c
j+ 1

2

and \alpha p

j+ 1
2

in (4.2). Once this is done, we will use an appropriate

discrete R-H condition along with (A.3) to obtain \alpha j+ 1
2
= \alpha c

j+ 1
2

+ \alpha p

j+ 1
2

in (4.1).

Let us assume that the data at time t locally at x = xj+ 1
2
corresponds to either

an isolated shock or a contact discontinuity propagating to the right. In this case, the
convection part of the numerical flux would capture steady isolated discontinuities

exactly if \scrF c,(i)

j+ 1
2

= F c,(i)
\bigl( 
\bfitU  - 

j+ 1
2

\bigr) 
in (4.2), which results in

(4.3)

\Delta F
c,(i)

j+ 1
2

= \alpha c
j+ 1

2
\Delta U

(i)

j+ 1
2

\forall i, where \Delta F
c,(i)

j+ 1
2

:= F c,(i)
\Bigl( 
\bfitU +

j+ 1
2

\Bigr) 
 - F c,(i)

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
.

Hence, for these special data we can obtain \alpha c
j+ 1

2

from (4.3),

(4.4) \alpha c
j+ 1

2
=

\Delta F
c,(i)

j+ 1
2

\Delta U
(i)

j+ 1
2

,
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and it will be independent of i. This, however, is not true for general data, for which
formula (4.4) cannot be used. Therefore, in order to be able to handle the general
data case, we use the third (energy E) component of the fluxes by taking i = 3 in
(4.4). This choice is motivated by the fact that the energy contains the contribution
of both the kinetic and internal energies and hence carries maximum information of
propagation of waves. We thus set

(4.5) \alpha c
j+ 1

2
=

\Delta F
c,(3)

j+ 1
2

\Delta Ej+ 1
2

, \Delta F
c,(3)

j+ 1
2

:= F c,(3)
\Bigl( 
\bfitU +

j+ 1
2

\Bigr) 
 - F c,(3)

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
.

Applying similar arguments to the pressure part of the numerical flux gives

(4.6) \alpha p

j+ 1
2

=
\Delta F

p,(3)

j+ 1
2

\Delta Ej+ 1
2

, \Delta F
p,(3)

j+ 1
2

:= F p,(3)
\Bigl( 
\bfitU +

j+ 1
2

\Bigr) 
 - F p,(3)

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
.

Adding (4.5) and (4.6) up and using once again the flux splitting (A.3) result in
(4.7)

\alpha j+ 1
2
=

\Delta F
c,(3)

j+ 1
2

\Delta Ej+ 1
2

+
\Delta F

p,(3)

j+ 1
2

\Delta Ej+ 1
2

=
\Delta F

(3)

j+ 1
2

\Delta Ej+ 1
2

, \Delta F
(3)

j+ 1
2

:= F (3)
\Bigl( 
\bfitU +

j+ 1
2

\Bigr) 
 - F (3)

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
.

Similarly for a left-going isolated shock or contact discontinuity, we will obtain

(4.8) \alpha j+ 1
2
=  - 

\Delta F
(3)

j+ 1
2

\Delta Ej+ 1
2

.

Finally, in order to avoid any directional dependence in (4.1), we combine (4.7) and
(4.8) to define the following ND coefficient:

(4.9) \alpha j+ 1
2
=

\bigm| \bigm| \bigm| \bigm| \bigm| \Delta F
(3)

j+ 1
2

\Delta Ej+ 1
2

\bigm| \bigm| \bigm| \bigm| \bigm| .
The semidiscrete central scheme (3.1), based on the numerical flux (4.1), (4.9),

can capture isolated discontinuities accurately. However, it does not have an appro-
priate amount of ND as the obtained discrete R-H based ND coefficient (4.9) may be
either too small or too large, particularly in the rarefaction regions of the flow fields.
Therefore, one needs to bound this ND coefficient in order to ensure that the scheme
generates physically realistic discrete solutions. To this end, we require that the coef-
ficients \alpha c

j+ 1
2

and \alpha p

j+ 1
2

fall within the bounds set using the smallest and largest (by

magnitude) eigenvalues of the matrices Ac and Ap, respectively, namely,

min
\Bigl\{ \bigm| \bigm| \bigm| u - 

j+ 1
2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} \leq \alpha c
j+ 1

2
\leq max

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} ,

0 \leq \alpha p

j+ 1
2

\leq max
\Bigl\{ 
c - 
j+ 1

2

, c+
j+ 1

2

\Bigr\} 
,

and hence,

(4.10) min
\Bigl\{ \bigm| \bigm| \bigm| u - 

j+ 1
2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} \leq \alpha j+ 1
2
\leq max

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} +max
\Bigl\{ 
c - 
j+ 1

2

, c+
j+ 1

2

\Bigr\} 
.
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A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3939

Notice that the upper bound in (4.10) is larger than the original upper bound on
the local speeds (3.4), which was obtained based on the spectral radius of the unsplit
matrix A. In order to further reduce the amount of ND, the upper bound in (4.10) is
replaced with aj+ 1

2
given by (3.4). We, therefore, expect the resulting scheme to be

stable provided
(4.11)

\alpha min
j+ 1

2
:=min

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} \leq \alpha j+ 1
2
\leq max

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| +c - 
j+ 1

2

,
\bigm| \bigm| \bigm| u+

j+ 1
2

\bigm| \bigm| \bigm| + c+
j+ 1

2

\Bigr\} 
=:\alpha max

j+ 1
2
.

Our adaptive diffusion central scheme is designed by modifying (4.9) in such a
way that the stability ensuring inequality (4.11) is satisfied. In particular, we take
the adaptive ND coefficient

(4.12) \alpha j+ 1
2
=

\left\{     
min

\Bigl\{ 
\alpha min
j+ 1

2
, \kappa \alpha max

j+ 1
2

\Bigr\} 
if \theta j+ 1

2
\leq (\Delta x)2,

max
\Bigl\{ 
\alpha min
j+ 1

2
, min

\Bigl( \widehat \alpha j+ 1
2
, \alpha max

j+ 1
2

\Bigr) \Bigr\} 
otherwise,

where the smoothness detector \theta j+ 1
2
is defined as

\theta j+ 1
2
= max

1\leq i\leq 3

\left\{   
\bigm| \bigm| \bigm| \Delta U

(i)

j+ 1
2

\bigm| \bigm| \bigm| 
max

\Bigl( \bigm| \bigm| \bigm| (U (i))+
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| (U (i)) - 
j+ 1

2

\bigm| \bigm| \bigm| , \delta \Bigr) 
\right\}   .

Here, U := (\rho ,m,E)\top is the conservative variable, and \widehat \alpha j+ 1
2
denotes the following

desingularized version of (4.9):

(4.13) \widehat \alpha j+ 1
2
=

2
\bigm| \bigm| \bigm| \Delta F

(3)

j+ 1
2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Delta Ej+ 1
2

\bigm| \bigm| \bigm| +max
\Bigl\{ \bigm| \bigm| \bigm| \Delta Ej+ 1

2

\bigm| \bigm| \bigm| , \delta \Bigr\} ,

where \delta > 0 is a small desingularization parameter (in all of the numerical experiments
reported in section 5, we have used \delta = 10 - 10), and \kappa \in [0, 1] is a numerical diffusion
regulator (NDR) number, whose role will be discussed in section 5.

In summary, the resulting adaptive diffusion central flux \bfscrF FV
j+ 1

2
, which will be

used in the construction of the fifth-order finite-difference numerical flux in (2.2), is

\bfscrF FV
j+ 1

2
=

1

2

\Bigl[ 
\bfitF 

\Bigl( 
\bfitU  - 

j+ 1
2

\Bigr) 
+ \bfitF 

\Bigl( 
\bfitU +

j+ 1
2

\Bigr) \Bigr] 
 - 1

2
\alpha j+ 1

2
\Delta \bfitU j+ 1

2
, \Delta \bfitU j+ 1

2
:= \bfitU +

j+ 1
2

 - \bfitU  - 
j+ 1

2

,

where

\alpha j+ 1
2
=

\left\{     
min

\Bigl\{ 
\alpha min
j+ 1

2
, \kappa \alpha max

j+ 1
2

\Bigr\} 
if \theta j+ 1

2
\leq (\Delta x)2,

max
\Bigl\{ 
\alpha min
j+ 1

2
, min

\Bigl( \widehat \alpha j+ 1
2
, \alpha max

j+ 1
2

\Bigr) \Bigr\} 
otherwise,

with

\alpha min
j+ 1

2
= min

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| \bigm| \Bigr\} , \alpha max
j+ 1

2
= max

\Bigl\{ \bigm| \bigm| \bigm| u - 
j+ 1

2

\bigm| \bigm| \bigm| + c - 
j+ 1

2

,
\bigm| \bigm| \bigm| u+

j+ 1
2

\bigm| \bigm| \bigm| + c+
j+ 1

2

\Bigr\} 
,

\theta j+ 1
2
= max

1\leq i\leq 3

\left\{     
\bigm| \bigm| \bigm| \Delta U

(i)

j+ 1
2

\bigm| \bigm| \bigm| 
max

\Bigl( \bigm| \bigm| \bigm| (U (i))+
j+ 1

2

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| (U (i)) - 
j+ 1

2

\bigm| \bigm| \bigm| , \delta \Bigr) 
\right\}     , \widehat \alpha j+ 1

2
=

2
\bigm| \bigm| \bigm| \Delta F

(3)

j+ 1
2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Delta Ej+ 1
2

\bigm| \bigm| \bigm| +max
\Bigl\{ \bigm| \bigm| \bigm| \Delta Ej+ 1

2

\bigm| \bigm| \bigm| , \delta \Bigr\} .
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Remark 2. The desingularization used in (4.13) is just one of the possible desin-
gularization procedures. Several alternatives were discussed, for example, in [24, 26]
in the context of computing velocities in shallow water models. Furthermore, when
the density is small, a similar desingularization may be needed in computing u\pm 

j+ 1
2

and c\pm 
j+ 1

2

in (3.5).

Remark 3. In the first line in the adaptive diffusion central flux (4.12), we check
whether the solution is locally smooth by the smoothness detector \theta j+ 1

2
, and add

only a small amount of ND there. The smoothness criterion is based on the relative

smallness of
\bigm| \bigm| \Delta U

(i)

j+ 1
2

\bigm| \bigm| , which is supposed to be proportional to (\Delta x)5 for smooth

solutions interpolated using the fifth-order WENO-Z interpolant. The threshold of
(\Delta x)2 there is selected experimentally.

Remark 4. The proposed A-WENO scheme can be extended to hyperbolic sys-
tems of balance laws,

\bfitU t + \bfitF (\bfitU )x = \bfitS (\bfitU ),

in a straightforward way. The modified semidiscretization (2.1) will then read as

d

dt
\bfitU j =  - 

\bfscrF j+ 1
2
 - \bfscrF j - 1

2

\Delta x
+ \bfitS (\bfitU j),

where the numerical fluxes \bfscrF j+ 1
2
are obtained precisely in the same way as in the

sourceless case.

5. Numerical examples. In this section, we present several 1-D and 2-D nu-
merical examples. Our main goal is to demonstrate that the use of the adaptive
diffusion central flux (section 4) in (2.2) leads to higher-resolution---yet very robust---
A-WENO schemes compared with the one obtained by using the LLF flux (section 3).
The studied numerical fluxes will be referred to as ADAPTIVE and LLF fluxes, and
the obtained solutions will be referred to as ADAPTIVE and LLF solutions, respec-
tively. The 2-D finite-difference A-WENO schemes on Cartesian meshes are designed
in a ``dimension-by-dimension"" approach; see, e.g., [33]. Notice that the 2-D extension
is quite simple since, in the finite-difference framework, WENO-Z reconstructions are
performed in each direction separately using the point values of the computed solu-
tion at the grid points. The ratio of specific heats is taken to be \gamma = 1.4 in Examples
1--8 and \gamma = 5/3 in Example 9. In all of the presented examples, the time evolu-
tion has been carried out using the three-stage third-order strong stability preserving
Runge--Kutta solver (see, e.g., [13, 14]) with the CFL number 0.45.

5.1. One-dimensional examples. We begin with the 1-D examples. In all of
them, we take three different values of NDR, \kappa = 0.5, 0.2, and 0.1, which ensures that
in the areas of smooth parts of the computed solutions, the adaptive ND coefficient
\alpha j+ 1

2
in the ADAPTIVE flux is smaller than the ND coefficient aj+ 1

2
in the LLF flux.

Example 1---Slowly moving isolated contact discontinuity. We consider
the initial conditions,

(\rho (x, 0), u(x, 0), p(x, 0)) =

\Biggl\{ 
(1.4, 0.1, 1), x < 0.3,

(1.0, 0.1, 1), x > 0.3,

which correspond to an isolated moving contact discontinuity, across which \Delta F (3) =
u\Delta E.
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A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3941
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Fig. 5.1. Example 1: Density (\rho ) computed using the ADAPTIVE and LLF fluxes (left) and
zoom at the contact discontinuity area (right).

aj+ 1
2

\alpha j+ 1
2
with \kappa = 0.1

Fig. 5.2. Example 1: Time evolution of aj+ 1
2

(left) and \alpha j+ 1
2

(right).

We compute the ADAPTIVE and LLF solutions until the final time t = 2 on a
uniform grid with \Delta x = 1/200. The obtained densities are shown in Figure 5.1, where
one can see that the ADAPTIVE solutions for different values of \kappa are essentially the
same, and they are sharper than the LLF solution. The corresponding ND coefficients,
\alpha j+ 1

2
(for \kappa = 0.1) and aj+ 1

2
, as functions of time are plotted in Figure 5.2. As one

can see, \alpha j+ 1
2
\equiv 0.1, which is the speed of the moving contact discontinuity u = 0.1,

while aj+ 1
2
\approx 1.1 are substantially larger.

Example 2---Lax problem. We consider the Riemann initial data,

(\rho (x, 0), u(x, 0), p(x, 0)) =

\Biggl\{ 
(0.445, 0.698, 3.528), x < 0,

(0.500, 0.000, 0.571), x > 0,

which is a variant of the Lax problem from [29]. We compute the solution until the
final time t = 1.3 on a uniform grid with \Delta x = 1/20 and plot the densities in Figure 5.3.
As in the case of isolated moving contact wave, the ADAPTIVE solutions are slightly
sharper than the LLF one in the area of the contact discontinuity, which is zoomed
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Fig. 5.3. Example 2: Density (\rho ) computed using the ADAPTIVE and LLF fluxes (left) and
zoom at the contact discontinuity area (right).

aj+ 1
2

\alpha j+ 1
2
with \kappa = 0.1

Fig. 5.4. Example 2: Time evolution of aj+ 1
2

(left) and \alpha j+ 1
2

(right).

in Figure 5.3 (right). Like in Example 1, the ADAPTIVE solutions are very similar
for different values of \kappa .

In Figure 5.4, the time evolution of the corresponding ND coefficients, aj+ 1
2
and

\alpha j+ 1
2
, are shown. Here, \alpha j+ 1

2
is roughly equal to \kappa aj+ 1

2
in the areas where the

solution is smooth. However, at the left rarefaction corner, along with other areas
near discontinuities, the ADAPTIVE flux adds a little more ND. This way of switching
makes the ADAPTIVE solution essentially nonoscillatory near the sharp rarefaction
corners as well as at and near the discontinuities.

Example 3---Blastwave problem. We consider the strong shocks interaction
problem proposed in [48]. The initial conditions,

(\rho (x, 0), u(x, 0), p(x, 0)) =

\left\{     
(1, 0, 1000), x < 0.1,

(1, 0, 0.01), 0.1 \leq x \leq 0.9,

(1, 0, 100), x > 0.9,

are prescribed on the interval [0, 1], at both ends of which the reflective boundary
conditions are imposed. The final time is t = 0.038. We compute the ADAPTIVE
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A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3943
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Fig. 5.5. Example 3: Density (\rho ) computed using the ADAPTIVE and LLF fluxes (top left)
and zooms at the region of maximum interaction of waves (top right) and two contact discontinuities
(bottom row).

and LLF solutions using \Delta x = 1/400 and plot the densities in Figure 5.5. The LLF
solution computed using a finer mesh with \Delta x = 1/1600 serves as a reference solution.
As one can see, the ADAPTIVE solutions are practically identical for different values
of \kappa and are slightly sharper than the LLF solution. From the time evolution of aj+ 1

2

and \alpha j+ 1
2
, shown in Figure 5.6, one can see that \alpha j+ 1

2
\approx \kappa aj+ 1

2
in the smooth density

region, whereas the switch perfectly maintains the adaptive nature of the scheme in
the regions of shock, contact, and rarefaction waves.

Remark 5. We note that the solutions in Examples 1--3 mainly consist of piecewise
constant/linear functions. In these examples, we have primarily demonstrated the
robustness of the ADAPTIVE flux in capturing high gradients and discontinuities. Its
ability to substantially enhance the resolution for long final time due to the adaptive
nature of the ADAPTIVE flux will be shown in Examples 4 and 5, where the solutions
will contain both shocks/high gradient areas and large fine-scale structures.

Example 4---Shock-density wave interaction problem. We now consider
the shock-density wave interaction problem originally proposed in [44] and then slightly
modified in [5], where larger computational domain and final time were considered.
The initial conditions,

(\rho (x, 0), u(x, 0), p(x, 0)) =

\Biggl\{ 
(27/7, 4

\surd 
35/9, 31/3), x <  - 4,

(1 + 0.2 sin(5x), 0, 1), x >  - 4,
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aj+ 1
2

\alpha j+ 1
2
with \kappa = 0.1

Fig. 5.6. Example 3: Time evolution of aj+ 1
2

(left) and \alpha j+ 1
2

(right).

are prescribed on the interval [ - 5, 15], at both ends of which we set the free-stream
boundary conditions. In this problem, a Mach 3 shock wave interacts with density
disturbances created by perturbations present in the initial density. These distur-
bances then trigger the continuous nonlinear interaction of smooth flow with the dis-
continuities to generate high-frequency entropy waves along with multiple shocklets
downstream.

We compute the ADAPTIVE and LLF solutions until the final time t = 5 on a
very coarse mesh with \Delta x = 1/20. A reference solution is generated using the LLF
flux, but on a finer mesh with \Delta x = 1/80. The densities are plotted in Figure 5.7,
where one can clearly see that the high-frequency waves are better resolved using
the ADAPTIVE numerical flux than the LLF one. The shocklets downstream of the
main shock are well captured in an essentially nonoscillatory manner due to the larger
ND coefficients being utilized in the ADAPTIVE flux. In addition, we now see an
influence of the NDR number \kappa on the quality of the computed solution: smaller
values of \kappa lead to the improved resolution of the high-frequency waves. However, the
accuracy of the ADAPTIVE solutions computed with \kappa = 0.1 and 0.2 is almost the
same and does not improve when \kappa is further decreased. This suggests that \kappa = 0.1
might be a very good choice for the proposed adaptive diffusion central numerical
flux.

In Figure 5.8, we show the time evolution of the ND coefficients aj+ 1
2
and \alpha j+ 1

2
.

As one can see, in most of the domain \alpha j+ 1
2
= \kappa aj+ 1

2
. However, \alpha j+ 1

2
and aj+ 1

2

become comparable in the immediate neighborhoods of shock waves. The proposed
switch has performed very well in distinguishing between the shock/high gradient
and smooth parts of the solution: it self-adjusts to reduce the amount of ND needed
to accurately resolve the smooth structures while capturing shocks in an essentially
nonoscillatory way.

Furthermore, Figure 5.9 shows the ND coefficients of the blastwave (at t = 0.038)
and shock-density (at t = 5) problems computed using the ADAPTIVE (with \kappa = 0.1)
and LLF fluxes. The obtained results suggest that the ND coefficients can be substan-
tially reduced without risking spurious oscillation wherever the computed solution is
sufficiently smooth.
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Fig. 5.7. Example 4: Density (\rho ) computed using the ADAPTIVE and LLF fluxes (left) and
zoom at the high-frequency entropy waves area (right).

aj+ 1
2

\alpha j+ 1
2
with \kappa = 0.1

Fig. 5.8. Example 4: Time evolution of aj+ 1
2

(left) and \alpha j+ 1
2

(right).
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Fig. 5.9. Examples 3 and 4: ND coefficients for the blastwave problem at t = 0.038 (left) and
shock-density problem at t = 5 (right) computed using the ADAPTIVE and LLF fluxes.
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Example 5---Shock-entropy wave interaction problem. The final 1-D ex-
ample, taken from [46], can be considered as a variation of the shock-density wave
interaction problem (Example 4) with a smaller perturbation amplitude and a weaker
shock. The initial conditions,

(\rho (x, 0), u(x, 0), p(x, 0)) =

\Biggl\{ 
(1.51695, 0.523346, 1.805), x <  - 4.5,

(1 + 0.1 sin(20x), 0, 1), x >  - 4.5,

are prescribed on the interval [ - 5, 5], at both ends of which we set the free-stream
boundary conditions. In this problem, a forward-facing shock wave of Mach 1.1 in-
teracts with high-frequency density perturbations: as the shock wave moves, the
perturbations spread ahead. It is well-known that the developing high-frequency en-
tropy waves are difficult to accurately resolve. Moreover, these waves typically quickly
dissipate further downstream from the main shock under a coarse mesh resolution.

We compute the ADAPTIVE and LLF solutions until the final time t = 5 on
a coarse mesh with \Delta x = 1/40. A reference solution is generated using the LLF
flux on a finer mesh with \Delta x = 1/200. The densities, plotted in Figure 5.10, clearly
demonstrate the superiority of the proposed adaptive diffusion central numerical flux
over the LLF one. We also observe that the ADAPTIVE solutions computed with
different choices of \kappa are quite similar. Figure 5.11 shows that \alpha j+ 1

2
is substantially

smaller than aj+ 1
2
throughout the entire domain except near the main shock where

\alpha j+ 1
2
\approx aj+ 1

2
. This allows the smooth high-frequency waves to advect downstream

with the amplitude almost unchanged in a long time simulation due to a substantially
smaller ND present in the adaptive diffusion central numerical flux.

5.2. Two-dimensional examples. We now consider the 2-D Euler equations
of gas dynamics:

\rho t + (\rho u)x + (\rho v)y = 0,

mt + (\rho u2 + p)x + (\rho uv)y = 0,

nt + (\rho uv)x + (\rho v2 + p)y = 0,

Et + ((E + p)u)x + ((E + p)v)y = 0.

Here, \rho is the density, u and v are the x- and y-velocities, respectively, m := \rho u
and n := \rho v are the x- and y-momenta, respectively, p is the pressure, and E =
p

\gamma  - 1 + 1
2\rho (u

2 + v2) is the total energy.

-5 -4 -3 -2 -1 0 1 2 3 4 5
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Fig. 5.10. Example 5: Density (\rho ) computed using the ADAPTIVE and LLF fluxes (left) and
zoom at the high-frequency entropy waves area (right).
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aj+ 1
2

\alpha j+ 1
2
with \kappa = 0.1

Fig. 5.11. Example 5: Time evolution of aj+ 1
2

(left) and \alpha j+ 1
2

(right).

Based on the 1-D results reported in section 5.1, \kappa = 0.1 seems to be a small---yet
reliable---NDR number. Therefore, we have taken \kappa = 0.1 in all of the 2-D numerical
examples reported below.

Example 6---Double Mach reflection. In the first 2-D example taken from
[48], we consider the double Mach reflection of a strong shock from an oblique surface.
It describes the reflection of a planar Mach shock in the air hitting a wedge. The
computational domain is [0, 4]\times [0, 1] and the initial conditions are

(\rho (x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

\Biggl\{ 
(8, 8.25 cos \theta , - 8.25 sin \theta , 116.5), x < 1

6
+ y\surd 

3
,

(1.4, 0, 0, 1), x > 1
6
+ y\surd 

3
,

where \theta = \pi /6. Supersonic inflow boundary conditions are specified at x = 0 and
at the short part of the lower boundary y = 0 in the interval x \in [0, 1/6], while the
remaining part of the lower boundary is assumed to be a solid wall. Free-stream
outflow boundary conditions are set at x = 4. Finally, at the upper boundary y = 1,
the exact solution of the Mach 10 moving oblique shock is imposed.

We compute the ADAPTIVE and LLF solutions until the final time t = 0.2 on a
uniform mesh with \Delta x = \Delta y = 1/200. The obtained densities are shown in Figure 5.12,
where one can see that the small-scale structures along the slip line and the vortical
rollup (the integrity of the mushroom shaped structure) at the tip of the jet are
much better resolved in the ADAPTIVE solution. In Figure 5.13, we demonstrate
that the ND coefficients of the ADAPTIVE fluxes in both x- and y-directions are
substantially smaller than those of the corresponding LLF fluxes in the areas where
the solution is sufficiently smooth. One can also observe that the distribution of larger
ND coefficients of the ADAPTIVE fluxes agrees well with the locations of shocks, high
gradients, and small-scale structures.

Example 7---Forward facing step problem. The forward facing step prob-
lem [48] is initialized by a right-going Mach 3 flow in a wind tunnel containing a step.
The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length
units high and is located 0.6 length units from the left end of the tunnel. Reflecting
boundary conditions are used along the walls of the tunnel. Inflow boundary condi-
tions are imposed at the left end of the tunnel, and at the right, all of the gradients are
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LLF ADAPTIVE

Fig. 5.12. Example 6: Density (\rho ) computed using the LLF (left column) and ADAPTIVE
(right column) fluxes in the entire computational domain (top row) and zoom at the small structure
area (bottom row).

LLF ADAPTIVE

x
-d
ir
ec
ti
o
n

y
-d
ir
ec
ti
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n

Fig. 5.13. Example 6: ND coefficients in the x-direction (top row) and y-direction (bottom
row) of the LLF (left column) and ADAPTIVE (right column) fluxes. Notice that the maximum
values of the ND coefficients in the x- and y-directions are different as shown in the colormaps.

assumed to vanish. Initially, the wind tunnel is filled with a gas with \rho (x, y, 0) \equiv 1.4,
p(x, y, 0) \equiv 1, u(x, y, 0) \equiv 3, and v(x, y, 0) \equiv 0. The corner of the step is the center of
a rarefaction fan and hence is a singular point of the flow. For the treatment of the
singularity at the corner of the step, we adopt the same technique used in [48], which
is based on the assumption of a nearly steady flow in the region near the corner.

We compute the ADAPTIVE and LLF solutions until the final time t = 4 on a
uniform mesh with \Delta x = \Delta y = 1/320 and present the contour lines of the computed
densities in Figure 5.14. As one can see, the vortical structures emulated along the
slip line are much stronger and less diffused with the ADAPTIVE fluxes than the
LLF ones. The ND coefficients of the ADAPTIVE fluxes are once again much smaller
than the corresponding ND coefficients of the LLF fluxes, as shown in Figure 5.15.
Most noticeably, along the unstable slip line emerging from the triple point along the
shock front, which is responsible for the appearance of the small vortices due to the
Kelvin--Helmholtz instabilities, the adaptive ND coefficients of the ADAPTIVE flux

D
ow

nl
oa

de
d 

01
/2

8/
21

 to
 1

29
.8

1.
22

6.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3949

Fig. 5.14. Example 7: Density (\rho ) computed using the LLF (left) and ADAPTIVE (right) fluxes.
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Fig. 5.15. Example 7: ND coefficients in the x-direction (top row) and y-direction (bottom
row) of the LLF (left column) and ADAPTIVE (right column) fluxes. Notice that the maximum
values of the ND coefficients in the x- and y-directions are different as shown in the colormaps.

are about a third smaller than the corresponding ND coefficients of the LLF flux. This
allows the propagation of the vortices with smaller dissipation and thus the integrity
of their shape is much better maintained downstream.

Example 8---Two-dimensional Riemann problem. In this example, we con-
sider Configuration 3 of the 2-D Riemann problems from [28]; see also [30, 40, 41, 50].
The initial conditions are

(\rho (x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

\left\{         
(1.5, 0, 0, 1.5), x > 0.8, y > 0.8,

(0.5323, 1.206, 0, 0.3), x < 0.8, y > 0.8,

(0.138, 1.206, 1.206, 0.029), x < 0.8, y < 0.8,

(0.5323, 0, 1.206, 0.3), x > 0.8, y < 0.8.

We compute the ADAPTIVE and LLF solutions until the final time t = 0.8
on a uniform mesh with \Delta x = \Delta y = 1/400. The obtained densities are shown in
Figure 5.16. As one can see, the large-scale structures of the flow, including the
triple point, incident shock, reflected shock, Mach stem, and slip plane, are much
better resolved when the proposed adaptive diffusion central numerical flux is used.
Also, the instability along the neck of the jet is more pronounced in the ADAPTIVE
solution with a stronger vorticity deposition there. The ND coefficients of both the
ADAPTIVE and LLF fluxes are shown in Figure 5.17.

Example 9---Rayleigh--Taylor instability. In the last example, we consider
the Rayleigh--Taylor instability problem taken from [42]. In this test, we numeri-
cally solve the compressible Euler equations with gravitation, which, in the case of
acceleration due to gravity being set to g = 1, read as
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Fig. 5.16. Example 8: Density (\rho ) computed using the LLF (left) and ADAPTIVE (right) fluxes.
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Fig. 5.17. Example 8: ND coefficients in the x-direction (top row) and y-direction (bottom
row) of the LLF (left column) and ADAPTIVE (right column) fluxes.

\rho t + (\rho u)x + (\rho v)y = 0,

mt + (\rho u2 + p)x + (\rho uv)y = 0,

nt + (\rho uv)x + (\rho v2 + p)y = \rho ,

Et + ((E + p)u)x + ((E + p)v)y = n.

The gravitational terms on the RHS are discretized straightforwardly, as explained
in Remark 4.
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\Delta x = \Delta y = 1/400 \Delta x = \Delta y = 1/800

LLF ADAPTIVE LLF ADAPTIVE

Fig. 5.18. Example 9: Density (\rho ) computed using the LLF and ADAPTIVE fluxes on two
different grids.

The computational domain is [0, 0.25]\times [0, 1] and the initial conditions are

(\rho , u, v, p)
\bigm| \bigm| \bigm| 
(x,y,0)

=

\left\{     
(2, 0, - 0.025 c cos(8\pi x), 2y + 1) , c =

\sqrt{} 
\gamma p
\rho 

=
\sqrt{} 

5
3

\bigl( 
y + 1

2

\bigr) 
, y < 0.5,

(1, 0, - 0.025 c cos(8\pi x), y + 1.5) , c =
\sqrt{} 

\gamma p
\rho 

=
\sqrt{} 

5
3

\bigl( 
y + 3

2

\bigr) 
, y > 0.5.

Reflective boundary conditions are imposed at the left and right boundaries and the
following Dirichlet boundary conditions are set at the top and bottom boundaries:
(\rho , u, v, p)

\bigm| \bigm| 
y=1

= (1, 0, 0, 2.5) and (\rho , u, v, p)
\bigm| \bigm| 
y=0

= (2, 0, 0, 1).

In order to preserve the initial symmetry of the solution about the x = 0.125 axis,
we follow [8] and symmetrize the initial y-velocity as follows:

v(x, y, 0) =

\Biggl\{ 
 - 0.025 c cos(8\pi x), x < 0.125,

 - 0.025 c cos(8\pi (0.25 - x)), x > 0.125.

In addition, the symmetry is enforced during the computation. This is done as follows:
as soon as we compute certain values \bfitU \ell and \bfitU m such that x\ell +xm = 0.25, we replace

these values with \bfitU 
\ast 
\ell and \bfitU 

\ast 
m computed according to Algorithm B.1 described in

Appendix B.
We compute the ADAPTIVE and LLF solutions until the final time t = 1.95

on two different grids with \Delta x = \Delta y = 1/400 and 1/800. The obtained densities are
presented in Figure 5.18. As one can see (especially looking at finer mesh solutions),
the use of smaller ND coefficients in the ADAPTIVE flux (see Figure 5.19) leads to
a substantially higher resolution of the small complex structures.

6. Conclusion. One of the major drawbacks of higher-order nonlinear numeri-
cal schemes for the system of hyperbolic conservation laws is related to the fact that
they often employ very diffusive numerical fluxes to suppress oscillations that appear
in the areas where the solution contains large gradients and discontinuities. WENO
schemes, which achieve a high order of accuracy with the help of high-order WENO
interpolation procedures, often employ the robust, yet highly diffusive LLF numerical
flux. In this work, we have developed an adaptive diffusion central numerical flux,
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\Delta x = \Delta y = 1/400 \Delta x = \Delta y = 1/800

LLF ADAPTIVE LLF ADAPTIVE
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Fig. 5.19. Example 9: ND coefficients in the x- (top row) and y-directions (bottom row) of the
LLF (first and third columns) and ADAPTIVE (second and fourth columns) fluxes on two different
grids. Notice that the maximum values of the ND coefficients in the x- and y-directions are different
as shown in the colormaps.

which is then implemented in the framework of a fifth-order A-WENO finite-difference
scheme. The new flux can be viewed as a low diffusion modification of the LLF flux,
whose ND coefficient is modified to allow an adaptive control on the amount of the
ND based on the maximum local speed of propagation at the given location and time
moment. The local speed of propagation is estimated using a suitable discrete version
of the R-H condition. For adaptivity, lower and upper bounds of the adaptive ND
coefficient are obtained using the C-P splitting of the Jacobian. In the regions where
the solution is smooth, the upper bound is scaled down to remove the excessive ND.
In the areas of large gradients and discontinuities, the ND coefficients may become
as large as those of the LLF flux to suppress spurious oscillations and ensure robust-
ness and the essentially nonoscillatory nature of the resulting fifth-order A-WENO
scheme.

Our adaptive approach leads to an improved resolution of contact waves and fine-
scale structures of the solutions, as demonstrated on a number of challenging 1-D and
2-D benchmarks. The obtained results suggest that the proposed adaptive diffusion
central numerical flux outperforms the LLF flux, while being as robust as its more
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A-WENO SCHEMES WITH ADAPTIVE CENTRAL FLUX A3953

diffusive counterpart. We have also compared the time evolution of the ND coefficients
of both of the studied fluxes. The obtained results suggest that the ND coefficients can
be substantially reduced without risking spurious oscillations wherever and whenever
the computed solution is sufficiently smooth.

In this study, the proposed adaptive diffusion numerical flux has been imple-
mented in the context of a fifth-order A-WENO finite-difference scheme applied to
the Euler equations of gas dynamics. However, it can also be used as a numerical
flux in the frameworks of finite-volume and discontinuous Galerkin methods. The
resulting schemes can be applied to a variety of hyperbolic systems of conservation
and balance laws, which will be a subject of our future research.

Appendix A. Convection-pressure flux splitting. In this section, we
briefly review the C-P flux splitting proposed in [49].

It is well-known that for smooth solutions the compressible Euler system (3.3) is
equivalent to the following quasi-linear system:

\bfitU t +A\bfitU x = 0,

where the Jacobian is

A =
\partial \bfitF 

\partial \bfitU 
=

\left(      
0 1 0

\gamma  - 3

2
u2 (3 - \gamma )u \gamma  - 1

 - c2u

\gamma  - 1
+

\gamma  - 2

2
u3 c2

\gamma  - 1
 - 2\gamma  - 3

2
u2 \gamma u

\right)      .

The matrix A has three real and distinct eigenvalues \lambda 1 = u - c < \lambda 2 = u < \lambda 3 = u+c,
and the corresponding right eigenvectors

\bfitr 1 =

\left(  1
u - c

H  - uc

\right)  , \bfitr 2 =

\left(   1
u
1

2
u2

\right)   , \bfitr 3 =

\left(  1
u+ c

H + uc

\right)  ,

where H := (E + p)/\rho is the enthalpy. A is diagonalizable and

(A.1) A = R\Lambda R - 1,

where

\Lambda =

\left(  u - c 0 0
0 u 0
0 0 u+ c

\right)  and R =

\left(   1 1 1
u - c u u+ c

H  - uc
1

2
u2 H + uc

\right)   .

The C-P flux splitting is based on the following splitting of the diagonal matrix
\Lambda into its convective (\Lambda c) and pressure (\Lambda p) parts:

\Lambda = \Lambda c + \Lambda p, \Lambda c =

\left(  u 0 0
0 u 0
0 0 u

\right)  , \Lambda p =

\left(   - c 0 0
0 0 0
0 0 c

\right)  ,

which can be substituted into (A.1) to obtain the corresponding splitting of the
Jacobian:

(A.2) A = Ac +Ap, where Ac := R\Lambda cR - 1 = \Lambda c and Ap := R\Lambda pR - 1.
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It is easy to show that the Jacobian splitting (A.2) leads to the following C-P flux
splitting:

(A.3) \bfitF (\bfitU ) = A\bfitU = (Ac +Ap)\bfitU = \bfitF c(\bfitU ) + \bfitF p(\bfitU ),

where

\bfitF c(\bfitU ) =

\left(  \rho u
\rho u2

Eu

\right)  and \bfitF p(\bfitU ) =

\left(  0
p
pu

\right)  .

Appendix B. Symmetrization algorithm.

Algorithm B.1 Symmetrization algorithm.

for i = 1, 3, 4 do

Ai :=
\bigl( 
U

(i)

\ell + U
(i)

m

\bigr) 
/2

Bi :=
\bigl( 
U

(i)

m + U
(i)

\ell 

\bigr) 
/2

Ci :=
\bigl( 
max(Ai, Bi) + min(Ai, Bi)

\bigr) 
/2

U
\ast ,(i)
\ell := Ci

U
\ast ,(i)
m := U

\ast ,(i)
\ell 

end for

A2 :=
\bigl( 
| U

(2)

\ell | + | U
(2)

m | 
\bigr) 
/2

B2 :=
\bigl( 
| U

(2)

m | + | U
(2)

\ell | 
\bigr) 
/2

C2 :=
\bigl( 
max(A2, B2) + min(A2, B2)

\bigr) 
/2

U
\ast ,(2)
\ell := C2 sign

\bigl( 
U

(2)

\ell 

\bigr) 
U

\ast ,(2)
m :=  - U

\ast ,(2)
\ell 
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