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MOVING-WATER EQUILIBRIA PRESERVING PARTIAL
RELAXATION SCHEME FOR THE SAINT-VENANT SYSTEM\ast 

XIN LIU\dagger , XI CHEN\ddagger , SHI JIN\S , ALEXANDER KURGANOV\P , TONG WU\| , AND HUI YU\#

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop a new moving-water equilibria preserving numerical scheme for the Saint-
Venant system. The new scheme is designed in two major steps. First, the geometric source term is
incorporated into the discharge flux, which results in a hyperbolic system with a global flux. Second,
the discharge equation is relaxed so that the nonlinearity is moved into the stiff right-hand side of the
added auxiliary equation. The main advantages of the new scheme are that (i) no special treatment
of the geometric source term is required, and (ii) no nonlinear (cubic) equations should be solved to
obtain the point values of the water depth out of the reconstructed equilibrium variables, as it must
be done in the existing alternative methods. We also develop a hybrid numerical flux, which helps
to handle various flow regimes in a stable manner. Several numerical experiments are performed to
verify that the proposed scheme is capable of exactly preserving general moving-water steady states
and accurately capturing their small perturbations.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Saint-Venant system of shallow water equations, partial relaxation scheme, well-
balanced method, steady-state solutions (equilibria), moving-water and still-water equilibria

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 76M12, 65M08, 35L65, 86-08, 86A05

\bfD \bfO \bfI . 10.1137/19M1258098

1. Introduction. The Saint-Venant system of shallow water equations proposed
in [16] has been widely used to predict fluid flows in estuaries, oceans, coastal regions,
lakes, rivers, and channels. It generally describes a depth-averaged thin layer free-
surface flow of constant density under hydrostatic assumption over a rigid bottom.
In the one-dimensional (1-D) case, the Saint-Venant system over a frictional bottom
topography reads as

(1.1)

\left\{   
ht + qx = 0,

qt +
\Bigl( 
hu2 +

g

2
h2
\Bigr) 
x
=  - ghBx  - g

n2

h7/3
| q| q,

where h(x, t) is the water depth, u(x, t) is the depth-averaged velocity, q(x, t) :=
h(x, t)u(x, t) is the flow discharge, g is the constant gravitational acceleration, B(x)
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PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2207

is the bottom topography, and n is the Manning friction coefficient of the bottom.
The system (1.1) is a hyperbolic system of balance laws, which admits both

smooth and nonsmooth solutions. A special class of the solutions of (1.1) are steady-
state solutions at which ht \equiv 0 and qt \equiv 0 due to the fact that the flux gradient in
the second equation in (1.1) is exactly balanced by the geometric and friction source
terms. Two major classes of steady states are generally considered in the water flow
computations. The first class consists of the ``lake at rest"" (still-water) steady states
with the zero flow velocity

(1.2) q \equiv 0, h+B \equiv Const.

The second class of steady states consists of general moving-water steady states at
which q \not \equiv 0. If the bottom friction is neglected, the general smooth moving-water
equilibria are given by

(1.3) q \equiv Const, E :=
u2

2
+ g(h+B) \equiv Const.

For some particular (moving-water) (q \not \equiv 0) steady states, we refer the reader to [13]
and references therein. Notice that the still-water steady state (1.2) is a special case
of the general moving-water steady state (1.3) with u \equiv 0.

Steady states are of great practical importance since many physically relevant
solutions of (1.1) are, in fact, small perturbations of steady states. Numerically cap-
turing such solutions is a challenging task since straightforward application of shock-
capturing methods may lead to spurious oscillations. Such nonphysical oscillations
may strongly disturb the simulation of the physical waves unless a very fine mesh is
used, which, in turn, causes high, often unaffordable computational cost. Therefore,
it is necessary to design well-balanced numerical methods which guarantee that the
discretized numerical flux gradient is exactly balanced by the approximated source
terms at both the steady states (1.2) and (1.3), so that the steady-state solutions can
be exactly preserved independently of the grid size.

For still-water equilibria preserving numerical methods, the well-balanced prop-
erty hinges on a special approximation of the bed-slope source term  - ghBx. We refer
the readers to the nonexhaustive list of references on still-water equilibria preserving
numerical methods [1, 2, 3, 18, 20, 21, 25, 26, 28, 29, 33]. However, these methods
fail to accurately capture flows, which are at or near the moving-water equilibria.

Preserving moving-water equilibria is substantially more complicated. The main
difficulty is related to the fact that well-balanced approximations of the geometric
sources now need to include terms that are small for smooth solutions but may become
artificially large at discontinuities. Among the papers in which moving-water steady-
state-preserving methods were developed, the schemes in [5, 6, 9, 10, 13, 24, 25,
32, 34, 35] require nontrivial root-finding based on the energy balance, and some
methods require substantial effort on local reconstruction [4, 5, 6, 19] or complex
reconstruction of the geometric source terms [7, 32, 40]. The motivation of the current
study is to avoid aforementioned complexities in designing a moving-water steady-
state-preserving method.

In order to avoid complex discretization of geometric source term, we follow the
idea from [9, 11, 14] and incorporate the source terms of the discharge equation into
its flux and rewrite (1.1) in the following equivalent form:

(1.4)

\Biggl\{ 
ht + qx = 0,

qt +Kx = 0,
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A2208 LIU, CHEN, JIN, KURGANOV, WU, AND YU

where

(1.5) K := hu2 +
g

2
h2 +R,

so that K is a global equilibrium variable with

(1.6) R(x, t) := g

\int x \biggl[ 
h(\xi , t)Bx(\xi ) +

n2

h7/3(\xi , t)
| q(\xi , t)| q(\xi , t)

\biggr] 
d\xi .

Accordingly, the general (moving-water) steady states can be expressed in terms of q
and K as

q \equiv Const, K \equiv Const.

We note that an idea of incorporating the source terms into the fluxes has also recently
been used in the derivation of well-balanced schemes for both 1-D and two-dimensional
(2-D) Euler equations with gravitation [11].

In a moving-water equilibria preserving central-upwind scheme, recently presented
in [9], the equilibrium variables K and q are reconstructed to obtain the point values
of K and q needed to evaluate the numerical fluxes at cell interfaces. In addition, one
needs to compute the point values of h there. This is done by solving cubic equations
at each cell interface at every time step. This is not only computationally costly
but also quite challenging near the sonic points; also see [10, 24, 32, 41]. Moreover,
the system (1.4)--(1.6) is a hyperbolic system with a global flux, which makes the
development of an upwind scheme based on the solution of (generalized) Riemann
problems difficult or even impossible. In [17], it was proposed to build a relaxation
model for both equations in (1.4) so that one can easily develop an upwind scheme for
the linear part of the relaxation system. However, the numerical methods proposed
in [17] are not well-balanced.

In order to avoid the aforementioned numerical difficulties, we develop a novel
numerical scheme using a partial relaxation technique for the second equation in
(1.4). The proposed numerical scheme is well-balanced without any need of a special
treatment for the source terms, so that it is capable of exactly preserving both the
still-water (1.2) and moving-water (1.3) steady states. Our scheme is based on the
system (1.4)--(1.6) with a global flux, while solving cubic equations for computing the
point values of h is avoided. In order to deal with different flow regimes, we propose to
use the upwind method for the subcritical flow and the central upwind method for the
trans- and supercritical flows at each cell interface. A piecewise linear reconstruction
with a generalized minmod limiter and a second-order steady state and sign preserving
semi-implicit Runge--Kutta ODE solver from [12] are used in the developed numerical
method to achieve the second-order accuracy in both space and time.

The paper is organized as follows. A new partial relaxation approximation of the
Saint-Venant system is proposed in section 2. The numerical scheme based on the
hybrid numerical fluxes is derived in section 3. The new numerical scheme is tested
on a variety of numerical examples in section 4. Some concluding remarks can be
found in section 5.

2. Partial relaxation approximation of (1.4)--(1.6). In this section, we
present a relaxation approximation of the Saint-Venant system (1.4)--(1.6).

2.1. A brief overview of relaxation schemes. We begin with a review of
relaxation schemes, which were originally proposed in [22] for systems of conservation
laws. These schemes are developed by constructing a linear hyperbolic system with a
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PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2209

stiff lower-order term that approximates the original system with a small dissipative
correction. For the 1-D conservation law of the form

(2.1) \bfitU t + \bfitF (\bfitU )x = 0,

one can introduce the relaxation approximation

(2.2)
\bfitU t + \bfitP x = 0,

\bfitP t + a2\bfitU x =  - 1

\varepsilon 
(\bfitP  - \bfitF (\bfitU )),

which is equivalent to the original system (2.1) in the small relaxation limit when the
relaxation parameter \varepsilon \rightarrow 0+. In (2.2), \bfitP is an introduced auxiliary variable and a is a
positive constant satisfying the subcharacteristic condition a \geq max\bfitU \rho (\partial \bfitF (\bfitU )/\partial \bfitU ),
where \rho denotes the spectral radius of the matrix.

In [17], a slightly modified version of the relaxation scheme (2.2), applied to the
Saint-Venant system (1.4)--(1.6), resulted in the following relaxation approximation:

(2.3)
\bfitU t + \bfitP x = 0,

\bfitP t +A2\bfitU x =  - 1

\varepsilon 
(\bfitP  - \bfitF (\bfitU )) ,

where

(2.4) \bfitU =

\Biggl( 
h

q

\Biggr) 
, \bfitP =

\Biggl( 
w

v

\Biggr) 
, A =

\Biggl( 
a1 0

0 a2

\Biggr) 
, \bfitF (\bfitU ) =

\Biggl( 
q

K

\Biggr) 
,

in which the relaxation source term rapidly drives \bfitP \rightarrow \bfitF (\bfitU ) in the limit as \varepsilon \rightarrow 0+.
One can thus build an upwind semidiscrete approximation of the relaxation system
(2.3), (2.4). Its first-order form reads as

d

dt
\bfitU j +

\bfitP j+1  - \bfitP j - 1

2\Delta x
=

\Delta x

2
\cdot A \bfitU j+1  - 2\bfitU j + \bfitU j - 1

(\Delta x)2
,

(2.5)

d

dt
\bfitP j +A2 \bfitU j+1  - \bfitU j - 1

2\Delta x
=  - 1

\varepsilon 

\Bigl( 
\bfitP j  - \bfitF (\bfitU j)

\Bigr) 
+

\Delta x

2
\cdot \bfitP j+1  - 2\bfitP j + \bfitP j - 1

(\Delta x)2
,

(2.6)

where (\cdot ) denotes the cell averages, which will be introduced in the beginning of
section 3.

Unfortunately, the numerical scheme (2.5), (2.6) as well as its higher-order mod-
ifications introduced in [17] are not well-balanced since the dissipative terms on the
right-hand side (RHS) of (2.5) and (2.6) do not vanish at steady states and thus
introduce spurious waves.

2.2. Partial relaxation system. In order to construct a well-balanced relax-
ation scheme for the system (1.4)--(1.6), we introduce the following partial relaxation
system, in which we only relax the second equation in (1.4):

ht + qx = 0,(2.7)

qt + vx = 0,(2.8)

vt + a2qx =  - 1

\varepsilon 
(v  - K),(2.9)
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A2210 LIU, CHEN, JIN, KURGANOV, WU, AND YU

in which v is an auxiliary variable. In the numerical results reported in section 4, we
have used \varepsilon = 10 - 6. Such a relaxation is similar to Suliciu's relaxation [36], which
also found other applications; see, e.g., [15].

In the small relaxation limit (\varepsilon \rightarrow 0+), equations (2.8) and (2.9) can be approxi-
mated to leading order by

(2.10) v = K, qt +Kx = 0,

and one can find that the local equilibrium (2.10) is the momentum equation in (1.4).
It is well known that the relaxation approximation is dissipative and thus well-

posed provided a is sufficiently large, that is, it satisfies a subcharacteristic condition
which is derived below. In order to establish a proper subcharacteristic condition for
the partial relaxation system (2.7)--(2.9), we consider a simple case with B \equiv Const
and n = 0 (that is, the case in which the RHS of (1.1) vanishes) in our analysis. In
this case,

(2.11) K = hu2 +
g

2
h2 =

q2

h
+

g

2
h2,

and thus

(2.12) Kx = 2uqx  - (u2  - gh)hx.

Next, using (2.10)--(2.12), we obtain

Kt = 2uqt  - (u2  - gh)ht =  - 2uKx  - (u2  - gh)ht = 2u(u2  - gh)hx  - (3u2 + gh)qx.

Using the Chapman--Enskog expansion [8], one can obtain the following first-order
approximation of the proposed partial relaxation system (2.7)--(2.9):

v = K  - \varepsilon 
\bigl[ 
2u(u2  - gh)hx + (a2  - 3u2  - gh)qx

\bigr] 
+\scrO (\varepsilon 2),

which can then be substituted into (2.8) to eliminate the auxiliary variable v. This
results in

(2.13)

\Biggl( 
h

q

\Biggr) 
t

+

\Biggl( 
q

K

\Biggr) 
x

= \varepsilon 

\Biggl[ \Biggl( 
0 0

2u(u2  - gh) a2  - 3u2  - gh

\Biggr) \Biggl( 
h

q

\Biggr) 
x

\Biggr] 
x

+

\Biggl( 
0

\scrO (\varepsilon 2)

\Biggr) 
,

which introduces a higher-order dissipative perturbation of the system (1.4)--(1.6). As
one can easily see, the system (2.13) is dissipative provided the following subcharac-
teristic condition is satisfied:

(2.14) a >
\sqrt{} 

3u2 + gh.

3. Numerical scheme. In this section, we develop a semidiscrete numerical
scheme for the partially relaxed system (2.7)--(2.9), which can be rewritten in the
following vector form:

(3.1) \bfitU t + \bfitF (\bfitU )x = \bfitS (\bfitU ),

where

(3.2) \bfitU =

\left(   h

q

v

\right)   , \bfitF (\bfitU ) =

\left(   q

v

a2q

\right)   , \bfitS (\bfitU ) =

\left(    
0

0

 - 1

\varepsilon 
(v  - K)

\right)    .
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PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2211

The computational domain is discretized by using the finite-volume cells Ij =
[xj - 1

2
, xj+ 1

2
] of size \Delta x centered at xj =

\bigl( 
xj - 1

2
+ xj+ 1

2

\bigr) 
/2 with j = j\ell , . . . , jr. We

assume that the cell averages of \bfitU ,

(3.3) \bfitU j(t) \approx 
1

\Delta x

\int 
Ij

\bfitU (x, t) dx,

are available at a certain time level t and define the cell averages of \bfitS by

\bfitS j(t) \approx 
1

\Delta x

\int 
Ij

\bfitS (\bfitU (x, t)) dx.

We note that in the semidiscrete framework, all of the indexed quantities that depend
on \bfitU automatically depend on t, but we will omit this time dependence in the rest of
the paper for the sake of brevity.

3.1. Piecewise linear reconstruction and point values. Adopting the second-
order finite-volume approach, we use the cell averages (3.3) to approximate the com-
puted solution using a second-order piecewise linear reconstruction

(3.4) \widetilde \bfitU (x) := \bfitU j + (\bfitU x)j(x - xj), x \in Ij ,

where the slopes \bfitU x are to be computed in a nonoscillatory manner using a nonlinear
limiter. In the numerical results reported in section 4, we have used the generalized
minmod limiter (see, e.g., [30, 31, 37, 38]):

(\bfitU x)j = minmod

\Biggl( 
\theta 
\bfitU j+1  - \bfitU j

\Delta x
,
\bfitU j+1  - \bfitU j - 1

2\Delta x
, \theta 

\bfitU j  - \bfitU j - 1

\Delta x

\Biggr) 
,

with the minmod function

minmod(z1, z2, . . . ) :=

\left\{     
min(z1, z2, . . . ) if zi > 0 \forall i,
max(z1, z2, . . . ) if zi < 0 \forall i,
0 otherwise.

The parameter \theta \in [1, 2] controls the amount of numerical dissipation: the larger the
\theta , the smaller the numerical dissipation.

Using the piecewise linear reconstruction (3.4), we obtain the left- and right-sided
point values of \bfitU by

\bfitU  - 
j+ 1

2

= \bfitU j +
\Delta x

2
(\bfitU x)j , \bfitU +

j+ 1
2

= \bfitU j+1  - 
\Delta x

2
(\bfitU x)j+1.

These values can be then used to compute the corresponding values of u = q/h. In
order to be able to simulate the flows near wet-dry fronts, we use the desingularization
procedure to compute the point value of velocity (see, e.g., [25, 28]), namely

u\pm 
j+ 1

2

=

\surd 
2h\pm 

j+ 1
2

q\pm 
j+ 1

2\sqrt{} \bigl( 
h\pm 
j+ 1

2

\bigr) 4
+max

\bigl\{ \bigl( 
h\pm 
j+ 1

2

\bigr) 4
, \tau 
\bigr\} ,

where \tau > 0 is the prescribed positive parameter which is used to avoid division by
very small numbers. In the numerical experiments reported in section 4, we have used
\tau = 10 - 10. For consistency, we then recompute the corresponding values of q by

q\pm 
j+ 1

2

= h\pm 
j+ 1

2

\cdot u\pm 
j+ 1

2

.
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A2212 LIU, CHEN, JIN, KURGANOV, WU, AND YU

Equipped with the reconstructed point values of h and u, we use (2.14) and the
eigenvalues of the Jacobian of the original Saint-Venant system (1.1) to set

(3.5)
a = max

j

\Bigl\{ 
max

\Bigl( 
| u+

j+ 1
2

| +
\sqrt{} 
gh+

j+ 1
2

, | u - 
j+ 1

2

| +
\sqrt{} 
gh - 

j+ 1
2

,\sqrt{} 
3(u+

j+ 1
2

)2 + gh+
j+ 1

2

,
\sqrt{} 
3(u - 

j+ 1
2

)2 + gh - 
j+ 1

2

\Bigr) \Bigr\} 
.

Notice that a is to be recomputed at every time step.

3.2. Source term evaluation. The third component of the source term \bfitS j is
computed using the midpoint quadrature:

S
(3)

j =  - 1

\varepsilon 
(vj  - Kj) ,

where the values of the global variable K at the cell centers xj are computed by

(3.6) Kj =

\surd 
2 hj q

2
j\sqrt{} 

h
4

j +max
\bigl\{ 
h

4

j , \tau 
\bigr\} +

g

2
h

2

j +Rj , j = j\ell , . . . , jr.

Here, Rj can be computed using (1.6):
(3.7)

Rj = R(xj , t) = g

\int xj
\biggl[ 
h(\xi , t)Bx(\xi ) +

n2

h7/3(\xi , t)
| q(\xi , t)| q(\xi , t)

\biggr] 
d\xi , j = j\ell , . . . , jr.

We notice that formula (3.7) can be rewritten in the following recursive way:
(3.8)

Rj = Rj - 1 + g

\int xj

xj - 1

\biggl[ 
h(\xi , t)Bx(\xi ) +

n2

h7/3(\xi , t)
| q(\xi , t)| q(\xi , t)

\biggr] 
d\xi , j = j\ell + 1, . . . , jr,

and then the integral in (3.8) is discretized using a second-order quadrature to obtain
(3.9)

Rj = Rj - 1 +
g

2
(hj - 1 + hj)(Bj  - Bj - 1) +

gn2

2

\Biggl[ \Biggl( 
2 hj - 1

h
2

j - 1 +max
\bigl\{ 
h

2

j - 1, \tau 
\bigr\} 
\Biggr) 7/3

| qj - 1| qj - 1

+

\Biggl( 
2 hj

h
2

j +max
\bigl\{ 
h

2

j , \tau 
\bigr\} 
\Biggr) 7/3

| qj | qj

\Biggr] 
\Delta x, j = j\ell + 1, . . . , jr .

It should be observed that the recursive formula (3.9) requires a starting value Rj\ell ,
which is obtained by setting Rj\ell := (Rj\ell  - 1

2
+Rj\ell +

1
2
)/2, where Rj\ell  - 1

2
:= 0 and Rj\ell +

1
2

is computed using a slightly different quadrature:

Rj\ell +
1
2
= ghj\ell (Bj\ell +

1
2
 - Bj\ell  - 1

2
) + gn2| qj\ell | qj\ell 

\left(  2hj\ell 

h
2

j\ell 
+max

\bigl\{ 
h

2

j\ell 
, \tau 
\bigr\} 
\right)  7/3

\Delta x.

3.3. Upwind numerical fluxes. A semidiscrete finite-volume method for (3.1),
(3.2) can be written as

(3.10)
d

dt
\bfitU j =  - 

\bfscrF j+ 1
2
 - \bfscrF j - 1

2

\Delta x
+ \bfitS j ,
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PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2213

where \bfscrF j+ 1
2
are the numerical fluxes at the cell interfaces.

We note that equation in (2.7) is, in fact, coupled with equations (2.8) and (2.9)
through the source term only. We therefore first consider the subsystem

(3.11)

\Biggl( 
q

v

\Biggr) 
t

+

\Biggl( 
0 1

a2 0

\Biggr) \Biggl( 
q

v

\Biggr) 
x

=

\left(  0

 - 1

\varepsilon 
(v  - K)

\right)  .

Since the left-hand side (LHS) of (3.11) is linear with constant coefficients, one

can easily derive upwind numerical fluxes \scrF (2)

j+ 1
2

and \scrF (3)

j+ 1
2

, which read as

\scrF (2)

j+ 1
2

=
v+
j+ 1

2

+ v - 
j+ 1

2

2
 - a

2

\Bigl( 
q+
j+ 1

2

 - q - 
j+ 1

2

\Bigr) 
,(3.12)

\scrF (3)

j+ 1
2

= a2
q+
j+ 1

2

+ q - 
j+ 1

2

2
 - a

2

\Bigl( 
v+
j+ 1

2

 - v - 
j+ 1

2

\Bigr) 
.(3.13)

We then use the relation F (3) = a2F (1) to obtain the remaining component of the
numerical flux:

(3.14) \scrF (1)

j+ 1
2

=
q+
j+ 1

2

+ q - 
j+ 1

2

2
 - 1

2a

\Bigl( 
v+
j+ 1

2

 - v - 
j+ 1

2

\Bigr) 
.

3.4. Modified equation analysis. We now analyze the stability of the devel-
oped semidiscrete upwind scheme using a modified equation analysis. To this end,
we take the zero-relaxation limit, in which vj = Kj , use the first-order piecewise con-
stant reconstruction obtained by setting \bfitU j \equiv 0 in (3.4), and substitute the numerical
fluxes \bfscrF j+ 1

2
and \bfscrF j - 1

2
into (3.10) to obtain

d

dt
hj +

qj+1  - qj - 1

2\Delta x
=

\Delta x

2a
\cdot Kj+1  - 2Kj +Kj - 1

(\Delta x)2
,

d

dt
qj +

Kj+1  - Kj - 1

2\Delta x
=

a\Delta x

2
\cdot 
qj+1  - 2qj + qj - 1

(\Delta x)2
.

Thus, the modified equations for the first-order semidiscrete upwind scheme are

ht + qx =
\Delta x

2a
Kxx,(3.15)

qt +Kx =
a\Delta x

2
qxx.(3.16)

For simplicity, we consider the case with B \equiv Const and n = 0, in which K is
given by (2.11). We then differentiate (2.12) with respect to x to obtain

Kxx = 2uqxx + (gh - u2)hxx +
2

h
(qx)

2 +

\biggl[ 
2u

h
+ g

\biggr] 
(hx)

2  - 4u

h
qxhx,

which we substitute into (3.15) and rewrite the modified equations in the following
vector form:

(3.17)

\Biggl( 
h

q

\Biggr) 
t

+

\Biggl( 
q

v

\Biggr) 
x

=
\Delta x

2a

\Biggl( 
gh - u2 2u

0 a2

\Biggr) \Biggl( 
h

q

\Biggr) 
xx

+

\left(  2

h
(qx)

2 +

\biggl[ 
2u

h
+ g

\biggr] 
(hx)

2  - 4u

h
qxhx

0

\right)  .
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A2214 LIU, CHEN, JIN, KURGANOV, WU, AND YU

As one can see, the system (3.17) is dissipative as long as

(3.18) | u| <
\sqrt{} 

gh,

which is true for subcritical flows only. This indicates that the upwind numerical flux
approximations (3.12)--(3.14) may lead to a stable approximate solution only under
the subcritical flow condition (3.18).

Remark 3.1. We have conducted a series of numerical experiments (not reported
in this paper), which clearly indicate that the developed partial relaxation scheme
based on the upwind fluxes (3.12)--(3.14) is indeed unstable in the supercritical flow
regime; see, e.g., Example 1, Case (a).

3.5. Hybrid upwind/central-upwind numerical fluxes. According to the
analysis in section 3.4, at those cell interfaces x = xj+ 1

2
, where either

\bigm| \bigm| u+
j+ 1

2

\bigm| \bigm| >\sqrt{} gh+
j+ 1

2

or
\bigm| \bigm| u - 

j+ 1
2

\bigm| \bigm| >\sqrt{} gh - 
j+ 1

2

,

we replace the upwind numerical fluxes (3.12)--(3.14) with the central-upwind ones,
originally developed in [27] for general hyperbolic systems of conservation laws:

(3.19) \bfscrF j+ 1
2
=

a+
j+ 1

2

\bfitF (\bfitU  - 
j+ 1

2

) - a - 
j+ 1

2

\bfitF (\bfitU +
j+ 1

2

)

a+
j+ 1

2

 - a - 
j+ 1

2

+
a+
j+ 1

2

a - 
j+ 1

2

a+
j+ 1

2

 - a - 
j+ 1

2

\Bigl( 
\bfitU +

j+ 1
2

 - \bfitU  - 
j+ 1

2

\Bigr) 
.

Here, a+
j+ 1

2

and a - 
j+ 1

2

are one-sided local speeds of propagation. Their careful esti-

mation allows one to control the amount of the numerical diffusion present in the
central-upwind flux. If one wants to apply the central-upwind flux in all of the flow
regimes (both sub- and supercritical), one has to set a+

j+ 1
2

=  - a - 
j+ 1

2

\equiv a for all j,

which would lead to a very diffusive and non-well-balanced discretization of the system
(2.7)--(2.9). However, as we use the central-upwind flux in the supercritical regime
only, we can safely estimate the one-sided local speeds in (3.19) by using the largest
and smallest eigenvalues of the original system (1.1), namely by setting

a+
j+ 1

2

= max
\Bigl\{ 
u+
j+ 1

2

+
\sqrt{} 

gh+
j+ 1

2

, u - 
j+ 1

2

+
\sqrt{} 
gh - 

j+ 1
2

, 0
\Bigr\} 
,

a - 
j+ 1

2

= min
\Bigl\{ 
u+
j+ 1

2

 - 
\sqrt{} 
gh+

j+ 1
2

, u - 
j+ 1

2

 - 
\sqrt{} 
gh - 

j+ 1
2

, 0
\Bigr\} 
.

Remark 3.2. We note that the presented flux hybridization does not guarantee
the positivity of the computed water depth. In order to enforce the positivity, we

modify the first component of the numerical fluxes, \scrF (1)

j+ 1
2

, using the ``draining"" time-

step strategy proposed in [3] (also see [2, 9, 10]).

3.6. Fully discrete semi-implicit scheme. The semidiscretization (3.10) re-
sults in a system of time-dependent ODEs, which should be solved using an efficient,
stable, and sufficiently accurate ODE solver. Since the source term in (3.10) is stiff,
explicit ODE solvers typically used for solving nonlinear hyperbolic systems may be
extremely inefficient, as they suffer from severe stability time-step restrictions. We
therefore implement the second-order steady state and sign preserving semi-implicit
Runge--Kutta ODE solver SI-RK3 from [12, equation (3.2)]. In this section, we pro-
vide all of the required details, as application of the SI-RK3 method to the ODE
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PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2215

system (3.10) is not straightforward due to the presence of the nondamping source
term K/\varepsilon .

Let us assume that at time level t = tm the computed cell averages, \{ h
m

j \} , \{ qm
j \} ,

and \{ vm
j \} , are available. We then evolve them to the next time level t = tm+1 =

tm +\Delta tm according to the following algorithm.
Step 1. Compute a by (3.5), and use it to evaluate

\Delta tm = C
\Delta x

a
,

where C is a CFL number. In the numerical results reported in section 4, we have
used C = 0.4.
Step 2. Use \{ h

m

j \} , \{ qm
j \} , and \{ vm

j \} to compute \{ \bfscrF m
j+ 1

2
\} according to sections 3.1,

3.3, and 3.5.
Step 3. Compute

(3.20)
h

I

j = h
m

j  - \Delta tm

\Delta x

\Bigl( 
\scrF m,(1)

j+ 1
2

 - \scrF m,(1)

j - 1
2

\Bigr) 
,

q I
j = qm

j  - \Delta tm

\Delta x

\Bigl( 
\scrF m,(2)

j+ 1
2

 - \scrF m,(2)

j - 1
2

\Bigr) 
.

Step 4. Use \{ h
I

j \} and \{ q I
j \} to compute \{ KI

j \} by (3.6), (3.9).
Step 5. Compute

v I
j =

\varepsilon 

\varepsilon +\Delta tm

\biggl[ 
vm
j  - \Delta tm

\Delta x

\Bigl( 
\scrF m,(3)

j+ 1
2

 - \scrF m,(3)

j - 1
2

\Bigr) 
+

\Delta tm

\varepsilon 
KI

j

\biggr] 
.

Step 6. Use \{ h
I

j \} , \{ q
I
j \} , and \{ v I

j \} to compute \{ \bfscrF I
j+ 1

2
\} according to sections 3.1,

3.3, and 3.5.
Step 7. Compute

(3.21)

h
II

j =
3

4
h

m

j +
1

4

\biggl[ 
h

I

j  - \Delta tm

\Delta x

\Bigl( 
\scrF I,(1)

j+ 1
2

 - \scrF I,(1)

j - 1
2

\Bigr) \biggr] 
,

q II
j =

3

4
qm
j +

1

4

\biggl[ 
q I
j  - \Delta tm

\Delta x

\Bigl( 
\scrF I,(2)

j+ 1
2

 - \scrF I,(2)

j - 1
2

\Bigr) \biggr] 
.

Step 8. Use \{ h
II

j \} and \{ q II
j \} to compute \{ KII

j \} by (3.6), (3.9).
Step 9. Compute

v II
j =

3

4
vm
j +

\varepsilon 

4(\varepsilon +\Delta tm)

\biggl[ 
v I
j  - \Delta tm

\Delta x

\Bigl( 
\scrF I,(3)

j+ 1
2

 - \scrF I,(3)

j - 1
2

\Bigr) 
+

\Delta tm

\varepsilon 
KII

j

\biggr] 
.

Step 10. Use \{ h
II

j \} , \{ q II
j \} , and \{ v II

j \} to compute \{ \bfscrF II
j+ 1

2
\} according to sections

3.1, 3.3, and 3.5.
Step 11. Compute

(3.22)

h
m+1

j =
1

3
h

m

j +
2

3

\biggl[ 
h

II

j  - \Delta tm

\Delta x

\Bigl( 
\scrF II,(1)

j+ 1
2

 - \scrF II,(1)

j - 1
2

\Bigr) \biggr] 
,

qm+1
j =

1

3
qm
j +

2

3

\biggl[ 
q II
j  - \Delta tm

\Delta x

\Bigl( 
\scrF II,(2)

j+ 1
2

 - \scrF II,(2)

j - 1
2

\Bigr) \biggr] 
.
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A2216 LIU, CHEN, JIN, KURGANOV, WU, AND YU

Step 12. Use \{ h
m+1

j \} and \{ qm+1
j \} to compute \{ Km+1

j \} by (3.6), (3.9).
Step 13. Compute

v III
j =

1

3
vm
j +

2\varepsilon 

3(\varepsilon +\Delta tm)

\biggl[ 
v II
j  - \Delta tm

\Delta x

\Bigl( 
\scrF II,(3)

j+ 1
2

 - \scrF II,(3)

j - 1
2

\Bigr) 
+

\Delta tm

\varepsilon 
Km+1

j

\biggr] 
.

Step 14. Use \{ h
m+1

j \} , \{ qm+1
j \} and \{ v III

j \} to compute \{ \scrF III,(3)

j+ 1
2

\} according to

sections 3.1, 3.3, and 3.5.
Step 15. Compute

vm+1
j =

\varepsilon 2

\varepsilon 2 + (\Delta tm)2

\Biggl[ 
v III
j  - (\Delta tm)2

\varepsilon \Delta x

\Bigl( 
\scrF III,(3)

j+ 1
2

 - \scrF III,(3)

j - 1
2

\Bigr) 
+

\biggl( 
\Delta tm

\varepsilon 

\biggr) 2

Km+1
j

\Biggr] 
.

Remark 3.3. We would like to stress once again that the numerical fluxes \scrF m,(1)

j+ 1
2

,

\scrF I,(1)

j+ 1
2

, and \scrF II,(1)

j+ 1
2

in (3.20), (3.21), and (3.22), respectively, are to be modified using

the ``draining"" time-step strategy from [2, 3, 9, 10] in order to guarantee the positivity
of the computed values of h.

Remark 3.4. At time t = 0, we set v 0
j = K0

j , which are computed using (3.6),
(3.9).

4. Numerical examples. In this section, we test the performance of the pro-
posed well-balanced partial relaxation scheme on a number of numerical examples.
In these tests, we consider the cases of both continuous and discontinuous bottom
topographies. In all of the examples, we perform computations in the computational
domain [0, 25] split into N uniform cells with simple transmissive boundary conditions
and use the following parameters: the gravitational acceleration g = 9.812 and the
minmod parameter \theta = 1.9.

4.1. Frictionless Saint-Venant system (\bfitn = 0). We first consider a friction-
less case, for which the Manning friction coefficient n = 0.

Example 1---convergence to steady states. In this numerical example, we
study the convergence of the solutions computed using the proposed partial relax-
ation scheme towards steady flow over a hump. The bottom topography function is
continuous and defined by

(4.1) B(x) =

\Biggl\{ 
0.2 - 0.05(x - 10)2 if 8 \leq x \leq 12,

0 otherwise.

Depending on the initial and boundary conditions, the flow may be subcritical,
supercritical, or transcritical with or without a steady shock. We consider the four
sets of initial data and boundary conditions taken from [10]; also see [23, 39]. The
data for Cases (a), (b), (c), and (d) are summarized in Table 4.1 in which  - represents
a zero-extrapolation boundary condition.

Remark 4.1. In Case (c), the downstream boundary condition (h(25, t) \equiv 0.66)
is imposed only when the flow is subcritical.

In all of these four cases, the numerical solutions are obtained by the proposed
partial relaxation schemes at t = 300 using N = 200 uniform cells. The results (h+B,
q, K, and E) are shown in Figures 4.1--4.4. As one can see, the proposed numerical
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Table 4.1
Example 1: Initial data (ID) and boundary conditions (BC).

Case Description ID BC at x = 0 BC at x = 25

(a) Supercritical flow h(x, 0) = 2 - B(x) h(0, t) \equiv 2 --

q(x, 0) \equiv 0 q(0, t) \equiv 24 --

(b) Subcritical flow h(x, 0) = 2 - B(x) -- h(25, t) \equiv 2

q(x, 0) \equiv 0 q(0, t) \equiv 4.42 --

(c) Transcritical flow h(x, 0) = 0.66 - B(x) -- h(25, t) \equiv 0.66

without a jump q(x, 0) \equiv 0 q(0, t) \equiv 1.53 --

(d) Transcritical flow h(x, 0) = 0.33 - B(x) -- h(25, t) \equiv 0.33

with a jump q(x, 0) \equiv 0 q(0, t) \equiv 0.18 --

x

z

0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

Computed h+B

B

x

z

0 5 10 15 20 25

23.996

23.998

24

24.002

24.004

Computed q 

x

z

0 5 10 15 20 25
307.62

307.63

Computed K

x

z

0 5 10 15 20 25
91.623

91.624

91.625

Computed E

Fig. 4.1. Example 1, Case (a): Computed h+B, q, K and E.

scheme can capture the steady states of different flow regimes, and the computed
solutions are comparable with those reported in [9, 10, 23, 39].

We then study the dependence of the computed solutions on the relaxation pa-
rameter \varepsilon in Cases (a) and (b), in which the exact smooth solutions are available. We
measure the L\infty -errors for h, q, K, and E for \varepsilon = 10 - 16, 10 - 12, 10 - 8, and 10 - 4 and
report the obtained results in Tables 4.2 and 4.3. As one can clearly see, the designed
partial relaxation scheme is not sensitive to the choice of \varepsilon .

In Table 4.4, we have compared the proposed partial relaxation scheme with
several previously reported moving-water equilibrium preserving methods with respect
to the L\infty - and L1-errors in q for the subcritical flows, that is, Case (b) in Table 4.1
with N = 200 uniform cells. As one can see, our new scheme is more accurate than
those previously reported second-order moving-water equilibrium preserving methods
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x

z

0 5 10 15 20 25

0

0.5

1

1.5

2

Computed h+B

B

x

z

0 5 10 15 20 25
4.418

4.419

4.42

4.421

4.422

Computed q 

x

z

0 5 10 15 20 25
29.39

29.391

29.392

29.393

29.394

Computed K

x

z

0 5 10 15 20 25

22.064

22.066

22.068
Computed E

Fig. 4.2. Example 1, Case (b): Computed h+B, q, K, and E.

x

z

0 5 10 15 20 25

0

0.5

1 Computed h+B

B

x

z

0 5 10 15 20 25
1.52

1.525

1.53

1.535

1.54

Computed q 

x

z

0 5 10 15 20 25
7.352

7.353

7.354

7.355

Computed K

x

z

0 5 10 15 20 25
11.084

11.086

11.088

11.09

11.092

11.094

Computed E

Fig. 4.3. Example 1, Case (c): Computed h+B, q, K, and E.
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x

z

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4
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B

x

z
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0.18
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0.2

Computed q 

x
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0.9
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1

Computed K

x

z

0 5 10 15 20 25
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3.2

3.4

3.6

3.8

4

4.2

4.4

Computed E

Fig. 4.4. Example 1, Case (d): Computed h+B, q, K, and E.

Table 4.2
Example 1: L\infty -errors in Case (a) for different values of \varepsilon .

\varepsilon \| h - hexact\| L\infty \| q  - qexact\| L\infty \| K  - Kexact\| L\infty \| E  - Eexact\| L\infty 

10 - 16 3.26e-05 2.30e-12 4.00e-11 1.03e-06

10 - 12 3.26e-05 2.20e-12 3.91e-11 1.03e-06

10 - 8 3.26e-05 2.20e-12 4.00e-11 1.03e-06

10 - 4 3.26e-05 2.10e-12 3.60e-11 1.03e-06

Table 4.3
Example 1: L\infty -errors in Case (b) for different values of \varepsilon .

\varepsilon \| h - hexact\| L\infty \| q  - qexact\| L\infty \| K  - Kexact\| L\infty \| E  - Eexact\| L\infty 

10 - 16 3.31e-04 6.40e-13 5.40e-12 3.35e-05

10 - 12 3.31e-04 6.60e-13 5.30e-12 3.35e-05

10 - 8 3.31e-04 6.20e-13 5.20e-12 3.35e-05

10 - 4 3.31e-04 4.50e-13 4.40e-12 3.35e-05

at the moving-water equilibrium. Several third- and fourth-order existing schemes
yield, as expected, better accuracy, however, at the cost of more expensive spatial
reconstruction.

Example 2---small perturbations of moving-water equilibria. This exam-
ple is designed to test the capability of the proposed numerical scheme of capturing
small perturbations of the moving-water equilibria studied in Example 1 over the
continuous bottom topography function (4.1). The initial conditions in different flow
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Table 4.4
Example 1, Case (b): Comparisons of the L\infty - and L1-errors in q for several moving-water

equilibrium preserving schemes.

Schemes Formal order L\infty -error in q L1-error in q

Partial relaxation scheme 2 6.6e-13 2.2e-13

George [19] 2 3.0e-6 -

Cheng and Kurganov [10] 2 - 5.3e-5

Xing [40] 3 4.2e-13 2.6e-14

Castro D\'{\i}az et al. [6] 3 - 1.0e-13

Noelle et al. [32] 4 1.77e-15 8.84e-17

regimes of this test are taken from the steady state solutions of Cases (a)--(c) in Ex-
ample 1 with adding a small positive number 0.05 to the water depth in the interval
x \in [5.75, 6.25]. Theoretically, this disturbance should split into two waves propagat-
ing with the flows. We run the tests with 200 uniform cells. We note that the same
perturbations of the steady-state solutions were considered in [42].

We compute the numerical solutions using the proposed numerical scheme until
the final times t = 1 in Case (a) and t = 1.5 in Cases (b) and (c) over a coarse and fine
meshes with N = 100 and 1000 uniform cells, respectively. The obtained results are
plotted in Figures 4.5--4.7. As one can observe, no spurious oscillations are generated
and the propagating perturbations are well captured over both the coarse and the fine
meshes.

x

z

0 5 10 15 20 25
0.04

0

0.04

0.08

Fig. 4.5. Example 2, Case (a): The difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.

4.2. Saint-Venant system with friction (\bfitn \not = 0). We now test the proposed
partial relaxation scheme in the presence of the Manning friction term, and we set
n = 0.05. Examples 4--8 below are taken from [9].

Example 3---accuracy test. In this example, we modify the test taken from
[28, 32] by adding the bottom friction. We verify the convergence rate of the proposed
partial relaxation schemes in the case of a smooth solution. The following initial data
and bottom topography,

h(x, 0) = 5 + ecos(2\pi x), q(x, 0) = sin(cos(2\pi x)), B(x) = sin2(\pi x),

are defined over the computational domain [0, 1], and the periodic boundary conditions
are imposed. Since the exact solution is not explicitly known, we use a numerical

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

29
.8

1.
22

6.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2221

x

z

0 5 10 15 20 25

0

0.01

0.02

0.03

0.04

Fig. 4.6. Example 2, Case (b): The difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.

x

z

0 5 10 15 20 25

0

0.02

0.04

Fig. 4.7. Example 2, Case (c): The difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.

solution computed on a very fine mesh with N = 8000 uniform grid cells as a reference
solution. We run the simulations until the final time t = 0.1 when the solution is still
smooth (shocks are developed later in time). In this test, we set a = 10.

We measure the L1-errors for both h and q over different grid sizes. The results
are reported on Table 4.5, where one can observe the second order of accuracy as
expected.

Table 4.5
Example 3: L1-errors and experimental convergence rates.

Number of h q

grid cells L1-error rate L1-error rate

200 1.05e-03 -- 9.27e-03 --

400 2.66e-04 1.99 2.19e-03 2.08

800 6.47e-05 2.04 5.27e-04 2.06

1600 1.59e-05 2.02 1.26e-04 2.06

3200 4.27e-06 1.90 2.75e-05 2.20

Example 4---convergence to steady states (continuous bottom topog-
raphy). This is a modification of Example 1 with the only difference that we now
take into account the Manning friction term. We still consider the same super-, sub-,

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

29
.8

1.
22

6.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2222 LIU, CHEN, JIN, KURGANOV, WU, AND YU

and transcritical cases with the initial and boundary conditions as in Cases (a), (b),
and (d) in Table 4.1, respectively.

In all of these three cases, the numerical solutions are obtained by the proposed
partial relaxation scheme at time t = 300 using 200 uniform cells. The obtained
results (h + B, q, and K) are shown in Figures 4.8--4.10. As one can see, the pro-
posed numerical scheme can capture the steady states of different flow regimes in the
presence of bed friction.

x

z

0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

Computed h+B

B

x

z

0 5 10 15 20 25

23.996

23.998

24

24.002

24.004

Computed q 

x

z

0 5 10 15 20 25
307.7

307.8

307.9

Computed K

Fig. 4.8. Example 4, Case (a): Computed h+B, q, and K.
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1.5

2

Computed h+B

B

x

z

0 5 10 15 20 25
4.418

4.419

4.42

4.421

4.422

Computed q 

x

z

0 5 10 15 20 25

31.695

31.698

Computed K

Fig. 4.9. Example 4, Case (b): Computed h+B, q, and K.
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0
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0.2
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0.4

Computed h+B

B

x

z

0 5 10 15 20 25

0.178

0.18

0.182

0.184

Computed q 

x

z

0 5 10 15 20 25
1.052

1.054

1.056

1.058

1.06

1.062

Computed K

Fig. 4.10. Example 4, Case (d): Computed h+B, q, and K.

Example 5---small perturbations of moving-water equilibria (continu-
ous bottom topography). In this example, we test the ability of the proposed
partial relaxation scheme to capture the propagation of small perturbations of the
moving-water equilibria. We consider the same bottom topography definition (4.1),
and the initial data are obtained by adding a small positive number 0.001 to the water
depth in the interval x \in [4.5, 5.5] to the steady-state solutions obtained in Cases (a)
and (b) in Example 4.

We compute the numerical solutions until the final times t = 1 in Case (a) and
t = 1.5 in Case (b) using coarse and fine meshes with 100 and 1000 uniform cells,
respectively. The obtained results are shown in Figures 4.11 and 4.12, where one can
observe that no spurious oscillations are generated.
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x

z

0 5 10 15 20 25
0.001

0.0005

0

0.0005

0.001

0.0015

Fig. 4.11. Example 5, Case (a): The difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.
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0

0.0002

0.0004

0.0006

0.0008

Fig. 4.12. Example 5, Case (b): The difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.

Example 6---convergence to steady states (discontinuous bottom to-
pography). Next, we numerically study the convergence towards a steady flow over
a discontinuous bump. The bottom topography is given by

(4.2) B(x) =

\Biggl\{ 
0.2 if 8 \leq x \leq 12,

0 otherwise.

We consider the same super-, sub-, and transcritical cases with the initial and bound-
ary conditions as in Cases (a), (b), and (d) in Table 4.1, respectively. In all of these
three cases, the numerical solutions are obtained by the proposed partial relaxation
scheme at time t = 300 using 200 uniform cells.

The obtained results (h + B, q, and K) are shown in Figures 4.13--4.15. As one
case see, in Cases (a) and (b), the quality of the obtained results is practically not
affected by the presence of the discontinuity in B, while in the transcritical case (Case
(d)), somewhat larger (compared to Example 4) jumps in q and K at the flow regime
transition location near x = 12 can be observed. Yet, one can conclude that the
proposed numerical scheme is capable of capturing the steady states of different flow
regimes over the discontinuous bottom bed.

Example 7---small perturbations of moving-water equilibria (discon-
tinuous bottom topography). In this example, we investigate the ability of the
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Fig. 4.13. Example 6, Case (a): Computed h+B, q, and K.
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Fig. 4.14. Example 6, Case (b): Computed h+B, q, and K.
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1.15

1.2

1.25
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Computed K

Fig. 4.15. Example 6, Case (d): Computed h+B, q, and K.

proposed partial relaxation scheme to capture small perturbations of the moving-
water equilibria over the discontinuous bottom topography given by (4.2). The initial
data are obtained by adding a small positive number 0.001 to the water depth in the
interval x \in [5.75, 6.25] to the steady-state solutions obtained in Cases (a) and (b) in
Example 6. In this test, we compute the solutions until the final times t = 1 in Case
(a) and t = 1.5 in Case (b) using either 100 or 1000 uniform grid cells. The obtained
results, reported in Figures 4.16 and 4.17, demonstrate that in the case of discontin-
uous B, the proposed numerical scheme is able to capture small perturbations of the
moving-water steady state in a nonoscillatory manner.

Example 8---Riemann problem. In this example, we test the performance
of the proposed partial relaxation scheme on the test problem with a dry bed by
numerically solving the initial value problem with the Riemann initial data

h(x, 0) =

\Biggl\{ 
2 if x < 5,

0 otherwise,
q(x, 0) =

\Biggl\{ 
24 if x < 5,

0 otherwise

and the same bottom topography and boundary conditions as in Example 1, Case
(a); see Table 4.1. We compute the solution using 100 uniform grid cells and plot its
snapshots at times t = 0.1, 0.5, 1, 2, and 5 in Figure 4.18. One can observe that the
obtained results are stable, the water flow runs through the bump, and by t = 5 it
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x
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0.0015

Fig. 4.16. Example 7, Case (a): the difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.
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Fig. 4.17. Example 7, Case (b): the difference between h and the background moving steady-
state water depth computed using 100 and 1000 uniform cells.

reaches the same steady state as in Example 5, Case (a) as expected.

x

h
+
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0
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t=0.5
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x

q

0 5 10 15 20 25
0
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10

15
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25

x
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0 5 10 15 20 25

100

200

300

Fig. 4.18. Example 8: Computed h+B (left), q (middle), and K (right).

4.3. Comparison with an alternative well-balanced method. We now
compare the performance of the proposed partial relaxation scheme (referred to below
as ``new scheme"") with an alternative moving-water equilibrium preserving method---
the central-upwind scheme recently introduced in [9] (hereafter referred to as ``old
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scheme""). The scheme from [9] is based on a global flux formulation (1.4)--(1.6),
piecewise linear reconstruction of the equilibrium variables q and K, and recovering
of the point values h\pm 

j+ 1
2

by exactly solving the cubic equations

(4.3)
(q\pm 

j+ 1
2

)2

h
+

g

2
h2 +Rj+ 1

2
 - K\pm 

j+ 1
2

= 0

for h; see [9] for details.

Example 9---steady state of smooth transcritical flow. In the final exam-
ple, we consider a frictionless (n = 0) case and take the following bottom topography
over a [0, 100] computational domain,

B(x) =

\left\{                 

0 if x < 8 or x > 92,

0.2 - 0.05(x - 10)2 if 8 \leq x < 10,

0.15 + 0.05e - 36 sin36(\pi (x - 2)/8) if 27 < x < 35 or 65 < x < 73,

0.2 - 0.05(x - 90)2 if 90 < x \leq 92,

0.2 otherwise,

and the same initial and boundary conditions as in the transcritical case (Case (c))
studied in Example 1, namely

h(x, 0) = 0.66 - B(x), q(x, 0) \equiv 0,

q(0, t) = 1.53, h(25, t) = 0.66.

The solution of this initial boundary value problem is expected to converge to a
smooth transition steady flow with a large transcritical zone [10, 90].

We first investigate how the proposed new scheme performs over a coarse mesh
(with N = 100 uniform cells) against the old scheme. To this end, we use the conver-
gent numerical results over a very fine mesh (withN = 1000 uniform cells) as reference
solutions, and run the computations until a very large final time t = 5000, by which
both the new and the old schemes converge to their corresponding steady states. In
Figure 4.19, where we plot the obtained numerical solutions, one can observe that
even though both schemes are moving-water equilibria preserving, the new scheme
yields more accurate steady-state results over the coarse grid than the old scheme.
The reason why the old scheme performs relatively poorly in this test problem is that
when solving the cubic equation (4.3) in the transcritical zone, the nonlinear solver
faces an unavoidable instability at some cell interfaces there. In these points, the old
scheme switches to a non-well-balanced reconstruction of the water surface h+B (see
[9] for details), which makes the old scheme not truly well-balanced. We note that
this switch did not cause any problems in the benchmarks considered in [9] since the
transcritical zone there contained one point only, while here the transcritical zone is
large.

We then take the obtained numerical steady states and add a small perturbation
 - 0.2e - (x - 50)2 to its water depth field. We run the code for an additional 20 time units
and compare the solutions of both the new and the old schemes over the coarse grid
with the corresponding reference solution. The obtained results, plotted in Figure
4.20, clearly demonstrate that the proposed new scheme yields more accurate results
than the old scheme.

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

29
.8

1.
22

6.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTIAL RELAXATION SCHEME FOR SAINT-VENANT SYSTEM A2227
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Reference: N=1000

Old scheme: N=100
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Fig. 4.19. Example 9: Computed h + B (left), q (middle), and K (right) at numerical steady
states.
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Fig. 4.20. Example 9: Computed h+B (left), q (middle), and K (right) at t = 20 after adding
a perturbation to the steady state shown in Figure 4.19.

5. Conclusion. In this paper, we have developed a novel partial relaxation
scheme for the 1-D Saint-Venant system of shallow water equations. The scheme is
well-balanced by construction as the source term is first incorporated into the global
flux and then shifted into the nonlinear part of the relaxation approximation. This
approach is advantageous compared to the existing alternatives in two aspects. First,
no special treatment of the geometric source term is required. This is important since
the well-balanced discretization proposed in [32] is, in fact, inconsistent for discontin-
uous solutions. Second, no nonlinear (cubic) equations should be solved to obtain the
point values of the water depth out of the reconstructed equilibrium variables. This
is important since solving such cubic equations may be impossible (typically in criti-
cal and transcritical cases), which forces one to use non-well-balanced reconstruction,
giving up the well-balanced property (at least locally); see, e.g., [9, 10].

The partial relaxation scheme was successfully tested on a large number of bench-
marks in order to demonstrate the high accuracy and robustness of the proposed
method. In our future work, we plan to extend the developed scheme to several more
complicated shallow water models, including the 2-D ones, and to other hyperbolic
systems of balance laws, such as compressible Euler equations with gravitation. The
2-D extension will be carried out through the flux globalization approach used in [11].
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