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Abstract

We propose a numerical dissipation switch, which helps to control the amount of numerical
dissipation present in central-upwind schemes. Our main goal is to reduce the numerical
dissipation without risking oscillations. This goal is achieved with the help of a more accurate
estimate of the local propagation speeds in the parts of the computational domain, which are
near contact discontinuities and shears. To this end, we introduce a switch parameter, which
depends on the distributions of energy in the x- and y-directions. The resulting new central-
upwind is tested on a number of numerical examples, which demonstrate the superiority of
the proposed method over the original central-upwind scheme.

Key words: Central-upwind schemes, numerical dissipation, local speeds of propagation, Euler
equations of gas dynamics, thermal rotating shallow water equations.
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1 Introduction

We consider two-dimensional (2-D) hyperbolic systems of conservation laws, which can be written
as

Ut + F (U)x + G(U)y = 0, (1.1)

where x and y are spatial variables, t is time, U (x, y, t) ∈ Rd is the vector of unknowns, and F
and G are the x- and y-fluxes, respectively.

It is well-known that numerically computing solutions of (1.1) is a challenging task since many
of these solutions develop very complicated nonsmooth structures including shock waves, contact
discontinuities and rarefaction zones. One of the most popular numerical tools for hyperbolic
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systems of conservation and balance laws are finite-volume methods; see, e.g., [7,12,14–16,29,45].
Most of the finite-volume methods are designed for the one-dimensional (1-D) version of (1.1)
and then extended to the higher-dimensional cases in a dimension-by-dimension manner. There
are also genuinely multidimensional methods (see, e.g., [2, 17, 20, 21, 27, 28, 35]), which are often
advantageous as they are less prone to grid effects.

In this paper, we focus on genuinely multidimensional central-upwind schemes, which are
Riemann-problem-solver-free methods that can be applied to a wide variety of hyperbolic sys-
tems of conservation and balance laws as a robust, stable and highly accurate “black-box” solver.
Central-upwind schemes were originally developed in [20,23,24] as a low dissipative alternative to
staggered central schemes—the second-order Nessyahu-Tadmor scheme [37] and its multidimen-
sional and higher-order extensions (see, e.g., [1, 13, 30–32]). The amount of numerical dissipation
present in central-upwind scheme was reduced in [17, 22]. Our goal is to further reduce the nu-
merical dissipation by introducing a numerical dissipation switch, which is similar to the switch
recently developed in [38]. We present the switch in the context of Euler equations of gas dy-
namics. It can be, however, used in many other models as, for instance, thermal rotating shallow
water equations as it is done in Example 6 below.

The paper is organized as follows. In §2, we briefly review the semi-discrete central-upwind
scheme from [3,17]. In §3, we discuss application of the scheme to the 2-D Euler equations of gas
dynamics and present the numerical dissipation switch. In §4, we demonstrate the effects of the
switch on a number of numerical examples.

2 Semi-Discrete Central-Upwind Scheme – Brief Overview

In this section, we briefly review the 2-D semi-discrete second-order central-upwind scheme from
[3,17].

We divide the computational domain into a set of uniform Cartesian cells Cj,k := [xj− 1
2
, xj+ 1

2
]×

[yk− 1
2
, yk+ 1

2
], which are centered at (xj, yk) = (xj− 1

2
+∆x/2, yk− 1

2
+∆y/2). We assume that the solution

of (1.1), realized in terms of its cell averages,

U j,k(t) :≈ 1

∆x∆y

∫∫
Cj,k

U(x, y, t) dx dy,

is available at a certain time t. The solution is then evolved in time by solving the following system
of ODEs:

d

dt
U j,k(t) = −

F j+ 1
2
,k(t)−F j− 1

2
,k(t)

∆x
−

Gj,k+ 1
2
(t)− Gj,k− 1

2
(t)

∆y
, (2.1)

where F j+ 1
2
,k(t) and Gj,k+ 1

2
(t) are the central-upwind numerical fluxes in the x- and y-directions,

respectively.

Remark 2.1 For the sake of brevity, we will omit the dependence of all of the indexed finite-
volume quantities on t in the rest of this paper.
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The central-upwind numerical fluxes from [17] are

F j+ 1
2
,k =

a+
j+ 1

2
,k
F (UE

j,k)− a−j+ 1
2
,k
F (UW

j+1,k)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
UW
j+1,k −UE

j,k − δUj+ 1
2
,k

]
,

Gj,k+ 1
2

=
b+
j,k+ 1

2

G(UN
j,k)− b−j,k+ 1

2

G(US
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
US
j,k+1 −UN

j,k − δUj,k+ 1
2

]
.

(2.2)

Here, δUj+ 1
2
,k and δUj,k+ 1

2
are built-in “anti-diffusion” terms:

δUj+ 1
2
,k = minmod

(
USW
j+1,k −U ∗

j+ 1
2
,k
, U ∗

j+ 1
2
,k
−USE

j,k , U
NW
j+1,k −U ∗

j+ 1
2
,k
, U ∗

j+ 1
2
,k
−UNE

j,k

)
,

δUj,k+ 1
2

= minmod
(
USW
j,k+1 −U ∗

j,k+ 1
2
, U ∗

j,k+ 1
2
−UNW

j,k , USE
j,k+1 −U ∗

j,k+ 1
2
, U ∗

j,k+ 1
2
−UNE

j,k

)
,

(2.3)

where

U ∗
j+ 1

2
,k

=
a+
j+ 1

2
,k
UW
j+1,k − a−j+ 1

2
,k
UE
j,k −

{
F (UW

j+1,k)− F (UE
j,k)
}

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

,

U ∗
j,k+ 1

2
=
b+
j,k+ 1

2

US
j,k+1 − b−j,k+ 1

2

UN
j,k −

{
G(US

j,k+1)−G(UN
j,k)
}

b+
j,k+ 1

2

− b−
j,k+ 1

2

.

(2.4)

In (2.2)–(2.4), the point values

UE
j,k = U j,k +

∆x

2
(Ux)j,k, UW

j,k = U j,k −
∆x

2
(Ux)j,k,

UN
j,k = U j,k +

∆y

2
(Uy)j,k, US

j,k = U j,k −
∆y

2
(Uy)j,k

(2.5)

and

U
NE(NW)
j,k = U j,k ±

∆x

2
(Ux)j,k +

∆y

2
(Uy)j,k, U

SE(SW)
j,k = U j,k ±

∆x

2
(Ux)j,k −

∆y

2
(Uy)j,k (2.6)

are to be computed using a nonlinear limiter to minimize spurious oscillations. For example, one
can use the generalized minmod limiter (see, e.g., [33, 37,44,46]):

(Ux)j,k = minmod

(
σ
U j,k − U j−1,k

∆x
,
U j+1,k − U j−1,k

2∆x
, σ

U j+1,k − U j,k

∆x

)
,

(Uy)j,k = minmod

(
σ
U j,k − U j,k−1

∆y
,
U j,k+1 − U j,k−1

2∆y
, σ

U j,k+1 − U j,k

∆y

)
,

(2.7)

where the parameter σ ∈ [1, 2] helps to control the smoothness of the reconstructed values (larger
values of σ correspond to sharper, but more oscillatory reconstructions).

The minmod function used in (2.3) and (2.7) is defined by

minmod(z1, z2, . . .) :=


min
k
{zk}, if zk > 0 ∀k,

max
k
{zk}, if zk < 0 ∀k,

0, otherwise,
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and is applied in both (2.3) and (2.7) in a component-wise manner.
Finally, a±

j+ 1
2
,k

and b±
j,k+ 1

2

are the one-sided local propagation speeds, which can be estimated,

for example, by

a+
j+ 1

2
,k

= max

{
λd

(
∂F

∂U

(
UW
j+1,k

))
, λd

(
∂F

∂U

(
UE
j,k

))
, 0

}
,

a−
j+ 1

2
,k

= min

{
λ1

(
∂F

∂U

(
UW
j+1,k

))
, λ1

(
∂F

∂U

(
UE
j,k

))
, 0

}
,

b+
j,k+ 1

2

= max

{
λd

(
∂G

∂U

(
US
j,k+1

))
, λd

(
∂G

∂U

(
UN
j,k

))
, 0

}
,

b−
j,k+ 1

2

= min

{
λ1

(
∂G

∂U

(
US
j,k+1

))
, λ1

(
∂G

∂U

(
UN
j,k

))
, 0

}
,

(2.8)

where λ1 < λ2 < . . . < λd are the d eigenvalues of the corresponding Jacobians, ∂F
∂U

and ∂G
∂U

.

Remark 2.2 We would like to point out that the upper bounds on the local speeds of propagation
given in (2.8) may be inaccurate; see, for example, [11]. Moreover, we have implemented the
strategy from [11] in Examples 1–6 below, but since it did not make any impact on the results in
any of the conducted numerical experiments, we only use the straightforward estimates (2.8) in
this paper.

Remark 2.3 We note that the semi-discrete central-upwind scheme (2.1)–(2.8) is a system of time
dependent ODEs, which should be integrated by a sufficiently accurate, efficient and stable ODE
solver. In our numerical experiments, we have used the three-stage third-order strong stability
preserving (SSP) Runge-Kutta method (see, e.g., [8, 9]) with an adaptive time step computed at
every time level using the CFL number 0.475:

∆t = 0.475 min

{
∆x

amax

,
∆y

bmax

}
, (2.9)

where
amax := max

j,k

{
a+
j+ 1

2
,k
,−a−

j+ 1
2
,k

}
, bmax := max

j,k

{
b+
j,k+ 1

2

,−b−
j,k+ 1

2

}
. (2.10)

3 Numerical Dissipation Switch

In this section, we present a way to reduce the amount of numerical dissipation present in the
central-upwind scheme from §2 applied to the 2-D Euler equations of gas dynamics:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + [u(E + p)]x + [v(E + p)]y = 0.

(3.1)

Here, ρ is the density, u and v are the x- and y-velocities, respectively, p is the pressure, and E is
the total energy, which is related to the primitive variables ρ, u, v and p via the equation of state
(EOS). For the ideal gas, the EOS is

E =
p

γ − 1
+
ρ

2

(
u2 + v2

)
,
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where γ is the specific heat ratio taken to be 1.4 in all of the numerical examples reported in §4.
According to (2.8), the one-sided local propagation speeds can be estimated by

a+
j+ 1

2
,k

= max
{
uE
j,k + cE

j,k, u
W
j+1,k + cW

j+1,k, 0
}
,

a−
j+ 1

2
,k

= min
{
uE
j,k − cE

j,k, u
W
j+1,k − cW

j+1,k, 0
}
,

b+
j,k+ 1

2

= max
{
vN
j,k + cN

j,k, v
S
j,k+1 + cS

j,k+1, 0
}
,

b−
j,k+ 1

2

= min
{
vN
j,k − cN

j,k, v
S
j,k+1 − cS

j,k+1, 0
}
,

(3.2)

where c :=
√
γp/ρ is the speed of sound, and

uE
j,k =

(ρu)E
j,k

ρE
j,k

, uW
j+1,k =

(ρu)W
j+1,k

ρW
j+1,k

, uN
j,k =

(ρu)N
j,k

ρN
j,k

, uS
j,k+1 =

(ρu)S
j,k+1

ρ S
j,k+1

,

vE
j,k =

(ρv)E
j,k

ρE
j,k

, vW
j+1,k =

(ρv)W
j+1,k

ρW
j+1,k

, vN
j,k =

(ρv)N
j,k

ρN
j,k

, vS
j,k+1 =

(ρv)S
j,k+1

ρ S
j,k+1

,

pE
j,k = (γ − 1)

[
E

E

j,k −
ρE
j,k

2

((
uE
j,k

)2
+
(
vE
j,k

)2
)]

,

pW
j+1,k = (γ − 1)

[
E

W

j+1,k −
ρW
j+1,k

2

((
uW
j+1,k

)2
+
(
vW
j+1,k

)2
)]

,

pN
j,k = (γ − 1)

[
E

N

j,k −
ρN
j,k

2

((
uN
j,k

)2
+
(
vN
j,k

)2
)]

,

pS
j,k+1 = (γ − 1)

[
E

S

j,k+1 −
ρ S
j,k+1

2

((
uS
j,k+1

)2
+
(
vS
j,k+1

)2
)]

,

cE
j,k =

√
γpE

j,k

ρE
j,k

, cW
j+1,k =

√
γpW

j+1,k

ρW
j+1,k

, cN
j,k =

√
γpN

j,k

ρN
j,k

, cS
j,k+1 =

√
γpS

j,k+1

ρ S
j,k+1

.

The estimate (3.2), however, may be very inaccurate in certain situations. In order to illustrate
this, let us consider a particular example with the initial data that correspond to a stationary shear
flow. Let us set up the discrete initial data in such a way that the boundary between the two
parts of the fluid moving in the positive and negative y-directions is located at x = xJ+ 1

2
for a

certain index J ; see Figure 3.1. One can easily verify that for this data setting

Gj,k+ 1
2
− Gj,k− 1

2
= 0, ∀(j, k), F j+ 1

2
,k −F j+ 1

2
,k = 0, ∀j 6= J and j 6= J + 1, ∀k.

Let us compute FJ− 1
2
,k, FJ+ 1

2
,k and FJ+ 3

2
,k. To this end, we first use (3.2) to obtain the corre-

sponding one-sided local speeds of propagation:

a−
J− 1

2
,k

= a+
J− 1

2
,k
− = a−

J+ 1
2
,k

= −2, a+
J+ 1

2
,k

= a−
J− 3

2
,k

= a+
J− 3

2
,k
− = 1, ∀k,

and then use them to compute the numerical fluxes, which are

FJ− 1
2
,k = (0, 1, 0, 0)>, FJ+ 1

2
,k = (−7/15, 1, 14/15, 0)>, FJ+ 3

2
,k = (0, 1, 0, 0)>.
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As one can see, the initial equilibrium will not be preserved at the discrete level as ρJ , ρJ+1, (ρv)J
and (ρv)J+1 will change after the first time step. We note that this occurs precisely because of
the discrepancy between a−

J+ 1
2
,k

and a+
J+ 1

2
,k

values caused by a very inaccurate overestimate of the

local speeds, which, in turn, leads to excessive numerical dissipation in the shear area.

ρ=1.4

u=0

v=−1

p=1

E=3.2

J−1
x

J−2
x

J+2
x

J+3
x

J
x

J+1
x

ρ=0.35

u=0

v=2

p=1

E=3.2

x

y

Figure 3.1: Initial setting for a stationary shear flow.

Therefore, in order to improve the resolution of the central-upwind scheme, we develop a
numerical dissipation switch, which will help to better estimate the one-sided local propagation
speeds by reducing the magnitudes of a±

j+ 1
2
,k

and/or b±
j,k+ 1

2

in the areas where the solution is near

contact discontinuities and shears. By doing this, we will reduce the size of the control volumes
used for the evolution of the solution in those areas (see [17] for details on the derivation of
central-upwind schemes via the integral form of conservation laws) and thus reduce the amount
of numerical dissipation there. At the same time, we will keep a sufficient amount of numerical
dissipation near shock waves to guarantee the stability of the method. To this end, we follow the
approach in [38] and add a switch on the sound speed parts of the estimates in (3.2), which are
replaced by

a+
j+ 1

2
,k

= max
{
uE
j,k + αj+ 1

2
,kc

E
j,k, u

W
j+1,k + αj+ 1

2
,kc

W
j+1,k, 0

}
,

a−
j+ 1

2
,k

= min
{
uE
j,k − αj+ 1

2
,kc

E
j,k, u

W
j+1,k − αj+ 1

2
,kc

W
j+1,k, 0

}
,

b+
j,k+ 1

2

= max
{
vN
j,k + βj,k+ 1

2
cN
j,k, v

S
j,k+1 + βj,k+ 1

2
cS
j,k+1, 0

}
,

b−
j,k+ 1

2

= min
{
vN
j,k − βj,k+ 1

2
cN
j,k, v

S
j,k+1 − βj,k+ 1

2
cS
j,k+1, 0

}
,

(3.3)

where αj+ 1
2
,k ∈ [0, 1] and βj,k+ 1

2
∈ [0, 1] are the switch parameters designed to be small near

contact discontinuities and shears. This goal is achieved by setting

αj+ 1
2
,k =


∆α

(1)

j+ 1
2
,k

∆αj+ 1
2
,k

, if ∆αj+ 1
2
,k > ε,

0, otherwise,

(3.4)
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where

∆α
(1)

j+ 1
2
,k

=

∣∣∣∣∣pW
j+1,k − pE

j,k

γ − 1
+
ρW
j+1,k(u

W
j+1,k)

2 − ρE
j,k(u

E
j,k)

2

2

∣∣∣∣∣ ,
∆α

(2)

j+ 1
2
,k

=

∣∣∣∣∣ρW
j+1,k(v

W
j+1,k)

2 − ρE
j,k(v

E
j,k)

2

2

∣∣∣∣∣ , ∆αj+ 1
2
,k =

√(
∆α

(1)

j+ 1
2
,k

)2

+
(

∆α
(2)

j+ 1
2
,k

)2

.

(3.5)

The motivation behind (3.3)–(3.5) is based on the observation that in the case when α
(1)

j+ 1
2
,k

is much

smaller than α
(2)

j+ 1
2
,k

, the local speed of propagation in the x-direction at the boundary between

cells Cj,k and Cj+1,k is determined by the intermediate eigenvalue u rather than by u+c and u−c.
Similarly, the switch in the y-direction is constructed using

βj,k+ 1
2

=


∆β

(1)

j,k+ 1
2

∆βj,k+ 1
2

, if ∆βj,k+ 1
2
> ε,

0, otherwise,

(3.6)

where

∆β
(1)

j,k+ 1
2

=

∣∣∣∣∣pS
j,k+1 − pN

j,k

γ − 1
+
ρS
j,k+1(vS

j,k+1)2 − ρN
j,k(v

N
j,k)

2

2

∣∣∣∣∣ ,
∆β

(2)

j,k+ 1
2

=

∣∣∣∣∣ρS
j,k+1(uS

j,k+1)2 − ρN
j,k(u

N
j,k)

2

2

∣∣∣∣∣ , ∆βj,k+ 1
2

=

√(
∆β

(1)

j,k+ 1
2

)2

+
(

∆β
(2)

j,k+ 1
2

)2

.

In (3.4) and (3.6), ε is a small positive parameter designed to prevent division by zero.
Let us now turn back to the example with the initial setting outlined in Figure 3.1. It is easy to

verify that after we replace the one-sided local speeds (3.2) with (3.3)–(3.5), all of the local speeds
in the x-direction will reduce to a±

j+ 1
2

≡ 0 and the initial steady state will be exactly preserved

at the discrete level. This simple example is designed to illustrate the main idea of the proposed
switch. Its advantages will be further demonstrated in a variety of numerical examples in §4.

Remark 3.1 In order to minimize the risk of instability, we use the values a±
j+ 1

2
,k

and b±
j,k+ 1

2

estimated in (3.2) (rather than their reduced versions given by (3.3)) in the computation of the
time steps in (2.9) and (2.10).

4 Numerical Examples

In this section, we demonstrate the performance of the proposed semi-discrete second-order central-
upwind scheme with numerical dissipation switch on several numerical examples. In all of the
experiments, we take the minmod parameter σ = 1.3 and the switch threshold parameter ε =
10−12.

In the remaining part of the paper, we will refer to the proposed central-upwind scheme with
the switch as “NEW scheme”, while the original central-upwind scheme will be referred to as
“OLD scheme”.
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Example 1 — Moving Contact Wave

In the first example, we numerically capture an isolated moving contact wave to compare the
performance of the NEW and OLD schemes. To this end, we consider a 2-D contact wave on the
computational domain Ω = [−0.2, 0.2]× [0, 0.8] with free boundary conditions and the initial data
given by

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)>
=

{
(1.4, 0, 0.2, 1)>, (x, y) ∈ D,
(1.0, 0, 0.2, 1)>, otherwise.

Here, the domain D, outlined using the dashed line in Figure 4.3, consists of the points (x, y) ∈ Ω
that satisfy the following conditions:

{−0.1 < x < 0.1, 0 < y < 0.02}
⋃
{−0.02 < x < 0.02, 0.02 < y < 0.1}

⋃
{

(x+ 0.02)2 + (y − 0.02)2 < 0.082
}⋃{

(x− 0.02)2 + (y − 0.02)2 < 0.082
}
.

We first proceed with the numerical simulations using the first-order scheme, which is obtained
by replacing the point values given by (2.5) and (2.6) with the corresponding cell averages:

UE
j,k = UW

j,k = UN
j,k = US

j,k = UNE
j,k = UNW

j,k = USE
j,k = USW

j,k = U j,k, ∀(j, k).

The results (density) computed on the uniform grid with ∆x = ∆y = 2/500 at the final time
t = 2 for both the NEW and OLD schemes are plotted in Figure 4.1. As one can clearly see,
the proposed numerical dissipation switch helps to significantly reduce the numerical dissipation,
especially at the contact waves (located at x = ±0.1), which are drastically smeared by the OLD
scheme. This can be also clearly seen in Figure 4.2, where we plot the 1-D slices of the computed
solutions along the lines x = 0.07 and y = 0.21.
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Figure 4.1: Example 1: Density (ρ) computed by the first-order versions of the NEW (left) and OLD
(right) schemes. The dashed line represents the initial contact line.

We then use the second-order schemes and plot the obtained results in Figure 4.3. As one can
observe, the contact wave, especially its parts located along the lines x = ±0.1, captured much
more accurately by the NEW scheme. This is confirmed in Figure 4.4, where we plot the 1-D
slices of the computed solutions along the lines x = 0.07 and y = 0.21.
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Figure 4.2: Example 1: 1-D slices along the lines x = 0.07 (left) and y = 0.21 (right) of the density
(ρ) computed by the first-order versions of the NEW (solid lines) and OLD (dashed lines) schemes.
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Figure 4.3: Example 1: Same as Figure 4.1 but for the second-order schemes.

Example 2 — Two-Dimensional Riemann problem

In the second example, we consider the 2-D Riemann problems and test the proposed central-
upwind scheme on all of the 19 configurations1 from [24]; see also [26, 41, 42, 49]. The obtained
results demonstrate the robustness of the NEW scheme that generates the numerical solutions,
which are not more oscillatory than the solutions computed by the OLD scheme or the central-
upwind schemes from [24]. At the same time, the reduced numerical dissipation helps to improve
the resolution of some parts of the computed solution. In order to illustrate this, we plot in Figure
4.5 the densities computed in Configurations 11, 13, 17 and 19. As one can see, there are some
improvements achieved by the NEW scheme, especially in the resolution of contact waves.

We also perform a more detailed numerical study for one of the configurations—Configuration
3, considered in a slightly larger computational domain [0, 1.2] × [0, 1.2] discretized using about

1These are genuinely different admissible configurations for polytropic gas, separated by the three types of 1-D
centered waves, namely, rarefaction, shock and contact waves.



10 A. Kurganov, Y. Liu & V. Zeitlin

0 0.2 0.4 0.6 0.8

1

1.1

1.2

1.3

1.4

-0.2 -0.1 0 0.1 0.2

1

1.1

1.2

1.3

1.4

Figure 4.4: Example 1: Same as Figure 4.2 but for the second-order schemes.

twice finer mesh with 1000 × 1000 uniform cells. The boundary conditions are the zero-order
extrapolation and the initial data are given by

(
ρ, u, v, p

)>
=


(1.5, 0, 0, 1.5)>, x > 1, y > 1,

(0.5323, 1.206, 0, 0.3)>, x < 1, y > 1,

(0.1380, 1.206, 1.206, 0.029)>, x < 1, y < 1,

(0.5323, 0, 1.206, 0.3)>, x > 1, y < 1.

We compute the solutions until the final time t = 1 and then plot the densities computed by the
NEW and OLD schemes in Figure 4.6 (top row). As one can clearly see, both schemes maintain
the diagonal symmetry of the guitar-like shape of the jet. However, we can clearly see that the
NEW scheme, unlike the OLD one, captures a sideband instability of the jet, expected in the
zones of strong along-jet velocity shear; see Figure 4.6 (bottom row), where we plot the velocity
field.

It is instructive to take a look at the final time distributions of the switch parameters αj+ 1
2
,k

and βj,k+ 1
2
, which are plotted in Figure 4.7. As one can observe, the parameters vary between 0

and 1 and their distributions clearly reflect the structure of the computed density shown in Figure
4.6 (left).

Example 3 — Explosion

In the third example, which is taken from [34], the initial conditions are radially symmetric and
given by

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)>
=

{
(1.000, 0, 0, 1.0)>, x2 + y2 < 0.16,

(0.125, 0, 0, 0.1)>, otherwise.

The computational domain is [0, 1.5] × [0, 1.5]. It is well-known (see, e.g., [5, 17, 22, 34]) that the
computed circular contact curve should develop instability by the time t = 3.2 unless the numerical
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Figure 4.5: Example 2: Densities (ρ) computed by the NEW (left column) and OLD (right column)
schemes. From top to bottom: Configurations 11, 13, 17 and 19. The initial settings, final times
(t = 0.3) and mesh size (400 × 400 cells in the [0, 1] × [0, 1] computational domain) are identical to
those used in [24].
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Figure 4.6: Example 2, Configuration 3: Density (top row) and velocity field (bottom row) computed
by the NEW (left column) and OLD (right column) schemes.

Figure 4.7: Example 2, Configuration 3: Switch parameters αj+ 1
2
,k (left) and βj,k+ 1

2
(right).

method contains an excessive amount of numerical dissipation. Therefore, this is a good test to
compare the numerical dissipation present in the NEW and OLD schemes.
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We solve the underlying problem using the uniform mesh with ∆x = ∆y = 3/800 and set
reflecting boundary conditions at x = 0 and y = 0 and free boundary conditions at x = 1.5 and
y = 1.5. The ρ -component of the solutions obtained at time t = 3.2 are plotted in Figure 4.8.
As one can see there, the contact surface computed by the NEW scheme is much “curlier” than
the one computed by the OLD scheme. This demonstrates that the use of numerical dissipation
switch helps to reduce the amount of numerical dissipation present in the central-upwind scheme.
The final time distributions of the switch parameters αj+ 1

2
,k and βj,k+ 1

2
are plotted in Figure 4.9.

Note that a small reduction in the numericall dissipation does not lead to any instabilities in the
neighborhood of the circular shock wave.

Figure 4.8: Example 3: Density (ρ) computed by the NEW (left) and OLD (right) schemes.

Figure 4.9: Example 3: Switch parameters αj+ 1
2
,k (left) and βj,k+ 1

2
(right).

Example 4 — Implosion

In the fourth example, also taken from [34], we numerically solve the implosion problem in a square
domain [0, 0.3]×[0, 0.3] and with solid wall boundary conditions. This test case is a challenging one
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because of the presence of non-grid-aligned shocks and emergence of a jet. The initial conditions
are:

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)>
=

{
(0.125, 0, 0, 0.14)>, |x|+ |y| < 0.15,

(1.000, 0, 0, 1.00)>, otherwise.

We first compute the solution on the uniform grid with ∆x = ∆y = 3/6000 until the final time
t = 2.5. As demonstrated in [34] (also see [5,22]), a jet of fluid is expected to emerge. This can be
seen in the upper row of Figure 4.10, where the jet produced by the NEW scheme develops faster,
which indicates a lower amount of numerical dissipation present in this scheme. Moreover, if we
refine the mesh by taking ∆x = ∆y = 3/8000, then the computed jets propagate further towards
the center of the computational domain (as the amount of numerical dissipation reduces when the
mesh is refined), but the NEW scheme is still clearly less dissipative than the OLD one; see the
lower row of Figure 4.10.

Figure 4.10: Example 4: Density (ρ) computed by the NEW (left column) and OLD (right column)
schemes using a coarser (with ∆x = ∆y = 3/6000; upper row) and finer (with ∆x = ∆y = 3/8000;
lower row) meshes.
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Example 5 — Kelvin-Helmholtz (KH) Instability

In the fifth example, we numerically study the KH instability, which is taken from [38], and also
studied in [6]. The KH instability occurs when a shearing flow is slightly perturbed and it will
generate internal waves, which are growing, breaking and forming vortices. This is the reason why
we can see some beautiful breaking wave-like cloud patterns or billow clouds in the sky. Here, we
study the KH instability to demonstrate that the NEW scheme has much better ability to capture
the formation of a wave pattern then the OLD one. To this end, we consider the following initial
conditions in [38]:

(
ρ(x, y, 0), u(x, y, 0)

)
=



(
1,−0.5 + 0.5e(y+0.25)/L

)
, y ∈ [−0.5,−0.25),(

2, 0.5− 0.5e(−y−0.25)/L
)
, y ∈ [−0.25, 0),(

2, 0.5− 0.5e(y−0.25)/L
)
, y ∈ [0, 0.25),(

1,−0.5 + 0.5e(0.25−y)/L
)
, y ∈ [0.25, 0.5],

where L is a smoothing parameter and we take L = 0.00625 corresponding to a thin shear interface
in the simulation below. Besides, the initial pressure p(x, y, 0) = 1.5 and the vertical velocity is

v(x, y, 0) = 0.01 sin(4πx).

The computation domain is [−0.5, 0.5]× [−0.5, 0.5]. We use a uniform grid with ∆x = ∆y =
1/1024 and the periodic boundary conditions to compute the solutions until time t = 4. The
slices of density ρ at times t = 1, 2.5 and 4 are plotted in Figure 4.11. We can clearly see that,
at t = 1, the NEW scheme capture slightly more vortices than the OLD one, especially the small
wavy bumps at the position around (−0.15, 0.26), (0.35, 0.26), (−0.42,−0.28) and (0.07,−0.28).
From these four positions, we observe that the NEW scheme produce more clear swirl structures.
At later time t = 2.5, the difference between the proposed NEW scheme and the OLD scheme
is apparently obvious. As one can see, the NEW scheme resolves secondary instabilities of KH
billows and resolves more details in the wave-breaking pattern, among other things. However,
these are much more fuzzy when computed by the OLD scheme. Furthermore, one can observe
that the vortices produced by the NEW scheme move faster than the those captured by the OLD
scheme. At the final time t = 4, we can first see that the results of the NEW scheme are much
less diffusive, as the red color is much darker which corresponding low-dissipation results. Second,
we find that the NEW scheme produces more isolated and complicated vorticities indicating that
this scheme can capture the KH instability much better than the OLD one. The time evolution
of the switch parameters αj+ 1

2
,k and βj,k+ 1

2
is shown in Figure 4.12, where one can see that the

parameters near the rapidly changing parts of the solution are less than 1, which helps to reduce
the numerical diffusion there.

Example 6 — Raleigh-Taylor (RT) Instability

In this example, we numerically investigate the RT instability, which is a common test for accuracy
studies of numerical schemes and contains both discontinuities and complex flow structure. Instead
of (3.1), we include a source terms acting downward in the y-direction. In fact, we solve the
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Figure 4.11: Example 5: Density (ρ) computed by the NEW (left column) and OLD (right column)
schemes at times t = 1 (top row), 2.5 (middle row) and 4 (bottom row).

following 2-D system:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + [u(E + p)]x + [v(E + p)]y = ρv.

We follow the setting in [43] and consider the following initial conditions:

(ρ, u, v, p)(x, y, 0) =

{
(2, 0,−0.025 c cos(8πx), 2y + 1), y < 0.5,

(1, 0,−0.025 c cos(8πx), y + 1), otherwise,
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Figure 4.12: Example 5: Switch parameters αj+ 1
2
,k (left column) and βj,k+ 1

2
(right column) at times

t = 1 (top row), 2.5 (middle row) and 4 (bottom row).

where c =
√

γp
ρ

is the sound speed. We should remark that in this example, we take the ratio of

specific heats γ = 5
3
. The computation is prescribed in the domain [0, 1/4] × [0, 1] and reflective

boundary conditions on left and right border lines are imposed. In addition, top and bottom
boundary states are fixed to (1, 0, 0, 2.5) and (2, 0, 0, 1), respectively.

This test is a useful one to verify numerical methods, as the resolution and richness of vortical
structures of this test case can be utilized as a measure of the numerical dissipation introduced
by the methods. In Figure 4.13, we use ∆x = ∆y = 1/1024 to compare the solutions computed
by the above two schemes at the times t = 1.95 and 2.95, respectively. As one can see, at earlier
time t = 1.95, there are no obvious differences between two schemes. However, at later time
t = 2.95, the difference is so obvious that we can clearly see the NEW scheme gives a much
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better resolution in complicated solution structures than the OLD one with same mesh size. It
demonstrates that the more dissipative OLD scheme suppresses the Rayleigh-Taylor instability and
artificially stabilizes the contact surface, while the NEW scheme can obtain the higher resolution
for the complicated flow structure. Finally, the time evolution of the switch parameters αj+ 1

2
,k

and βj,k+ 1
2
, presented in Figure 4.14, clearly demonstrates that these parameters are self-adapted

to the developing structures of the computed solution.

Figure 4.13: Example 6: Density (ρ) computed by the NEW and OLD schemes.

Figure 4.14: Example 6: Switch parameters αj+ 1
2
,k and βj,k+ 1

2
.

Remark 4.1 In order to numerically preserve the symmetry property of the computational re-
sults, in our experiments we rewrite the initial velocity in the y-direction in the following symmetric



Numerical Dissipation Switch 19

form:

v(x, y, 0) =

{
− 0.025 c cos(8πx), if x < 0.125,

− 0.025 c cos
(
8π(0.25− x)

)
, otherwise.

Example 7 — Vortex Instability in Thermal Rotating Shallow Water
Equations

In this example, we consider the 2-D thermal rotating shallow water equations (see [18,19]):

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 +
θ

2
h2)x + (huv)y = fhv + hθZx,

(hv)t + (huv)x + (hv2 +
θ

2
h2)y = −fhu− hθZy,

(hθ)t + (huθ)x + (hvθ)y = 0,

(4.1)

which was repeatedly rediscovered and used in the literature both in the atmospheric and oceanic
context; see, e.g., [4, 25, 36, 39, 40, 47, 48]. In (4.1), h denotes the thickness of the fluid layer, Z
represents the bottom topography, u and v stand for the zonal and meridional velocities, respec-
tively, θ is the relative potential temperature, and f(y) is the Coriolis parameter and taken to be
f(y) ≡ 1 in this example.

We consider the vortex instability test, which was introduced in [10] as a benchmark crash test
for numerical schemes; see [10,18] for more details. The initial conditions are given by

h(r, 0) ≡ 1, θ(r, 0) = 1− 1

5

∞∫
r

(
1 +

V (r′)

10r′

)
dr′, u(r, 0) = −y

r
V (r), v(r, 0) =

x

r
V (r), (4.2)

where r =
√
x2 + y2, and V (r) = r exp

(
− (r3 − 1)/3

)
is the nondimensional velocity. We note

that the unperturbed vortex (4.2) does not preserve its initial structure for very long time and thus
one cannot clearly see the appearance of instability. We therefore follow the approach in [10, 18]
and superimpose the purely thermal vortex with an unstable mode with azimuthal wavenumber
n = 3 and a small amplitude of the order of one percent of the background vortex field. In Figure
4.15, we plot the relative potential temperature θ computed by the NEW and OLD schemes in
the computational domain [−3, 3]× [−3, 3] at times t = 100, 150, 200 and 250. We notice that, at
an earlier time t = 100, one cannot see any visible difference between the results obtained by the
both schemes. However, at later times t = 150, 200 and 250, one can clearly see that the NEW
scheme produces more complicated branches than the OLD one, and the difference between the
solutions computed by the two studied schemes becomes more and more obvious as time increases.
Furthermore, the inertial instabilities develop much faster and become more evident in the NEW
scheme results.

On the other hand, in order to see the advantages of the NEW scheme in a more quantitative
way, we compute the standard deviation of the potential temperature θ from its initial value:

S(t) =

√√√√ 1

NxNy

Nx∑
j=1

Ny∑
k=1

[
θj,k(t)− θj,k(0)

]2

, (4.3)
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where Nx×Ny is a number of computational cells. We expect that the less-dissipative NEW scheme
will produce a larger standard deviation as the less-dissipative solution is expected to develop more
complex structures. In Figure 4.16, we plot S(t) computed by the NEW and OLD schemes using
coarser and finer uniform meshes with ∆x = ∆y = 1/100 and ∆x = ∆y = 1/150, respectively.
As one can clearly see, higher resolution solutions indeed have larger standard deviation. We also
observe that the solutions computed by the NEW scheme have larger standard deviation than the
ones computed by the OLD scheme on the same mesh. This demonstrates that the NEW scheme
indeed has the reduced amount of numerical dissipation.

Remark 4.2 A detailed information about the thermal rotating shallow water equations, flux
globalization based central-upwind scheme for them, and the corresponding numerical dissipation
switch can be found in [18, 19]. In Example 7, we only illustrate the effect of the numerical
dissipation switch.
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