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1 Classical optimality conditions

Let f : S ⊂ Rn → R, where S ⊂ Rn is a subset. Consider the following minimization
problem:

(P ) min
x∈S

f(x).

A point x̄ ∈ S is called a local minimum of this problem if there exists δ > 0 such that

f(x) ≥ f(x̄) for all x ∈ S such that ‖x− x̄‖ ≤ δ.

The point x̄ is called the global minimum if f(x) ≥ f(x̄) for all x ∈ S.

We say that f satisfying the γ-order growth condition at x̄, if there exists some κ, δ > 0
such that

f(x)− f(x̄) ≥ κ‖x− x̄|γ for all ‖x− x̄‖ ≤ δ.

In particular, if γ = 1, 2 we say f satisfying the first (second) order growth condition at
x̄.

When the space is R1, the problem becomes the classical extreme problem, and the
first necessarily condition is given by Fermat 1638 and Newton 1670.

Lemma 1.1 (Fermat 1638; Newton 1670). Let ϕ : O ⊂ R→ R be a differentiable function
defined on an open set O. If ϕ attains it local minimum(or maximum ) at x̄, then ϕ

′
(x̄) =

0.

If f is differentiable at a point x ∈ S, then the gradient and Hessian matrix are denoted
by

∇f(x) = (
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn
),

∇2f(x) =
[∂2f(x)

∂xi∂xj

]
, i, j = 1, . . . , n.

Theorem 1.1. (Euler 1755)(The first order necessarily condition) Let f be differentiable
at x̄ ∈ intS. If f attains it local minimum(or maximum ) at x̄, then

∇f(x̄) = 0. (1.1)

If we assume that f is convex, but not necessarily differentiable, then the necessarily
condition of a local minimizer becomes 0 ∈ ∂f(x̄).

When x̄ is not an interior of S, in order to characterize the necessary property of local
minimizer, we need the concepts of the tangent cone of S to x̄.

Definition 1.1. Let S ⊂ Rn be a nonempty set and x̄ ∈ S. The contingent (Bouligand)
cone of S to x̄ is defined as

TS(x̄) : = {d ∈ X : ∃ tk ↓ 0, ∃S 3 xk → x̄,
xk − x̄
tk

→ d}

= {d ∈ X : ∃ tk ↓ 0, dk → d s.t. x̄+ tkdk ∈ S}.
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Theorem 1.2. Assume that x̄ is a local minimum of problem (P) and that f is differen-
tiable at x̄. Then

∇f(x̄)Td ≥ 0, for all d ∈ TS(x̄)⇔ −∇f(x̄) ∈ [TS(x̄)]0

Usually, the negative polar of TS(x̄) is called Fréchet normal cone of S to x̄, denoted
by N̂S(x̄). Eqivalently,

N̂S(x̄) = {x∗ ∈ X∗| lim sup
x′

S→x̄

〈x∗, x′ − x̄〉
‖x′ − x̄‖

≤ 0}.

When S is convex,
TS(x̄) = cone(S − x̄)

and
N̂S(x̄) = NS(x̄) = {x̄ ∈ Rn : 〈x̄, x− x̄〉 ≤ 0, ∀x ∈ S}.

When S is defined by some constraint functions, for instance,

S := {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, . . . , p;hj(x) = 0, j = 1, 2, . . . , q}, (1.2)

where gi, hj are differentiable functions defined on Rn. or more general form

S := {x ∈ Rn : F (x) ∈ K}, (1.3)

where F : Rn → Rm is a differentiable mapping, K ⊂ Rm.
Question: how to characterize the tangent and the normal cone of S to

x̄ ∈ S?
It is not hard to know

TS(x̄) ⊂ {d ∈ Rn : ∇gi(x̄)Td ≤ 0, i ∈ I(x̄);∇hj(x̄)Td = 0, j = 1, 2, . . . , q} =: LS(x̄)

or
TS(x̄) ⊂ {d ∈ Rn : DG(x̄)Td ∈ TK(x̄)} =: LS(x̄).

Under what condition, the above inclusions become as equality?

TS(x̄) = LS(x̄)

Such condition is called constraint qualification, for example, Mangasarian-Fromovitz,
Robinson condition, metric regularity condition and so on.

Mangasarian-Fromovitz constraint qualification:

∇hj(x̄), j = 1, . . . , q, are linearly independent,
∃d ∈ X : ∇gi(x̄)d = 0, i = 1, . . . q,∇gi(x̄)d < 0,∀i ∈ I(x̄), (1.4)

where I(x̄) denotes the index set of active at x̄ inequality constraints.

Robinson constraint qualification:

0 ∈ int{F (x̄) +DF (x̄)(Rn)−K}. (1.5)
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Furthermore, In the case of the equality holds, how to compute the normal cone
[TS(x̄)]o? This is related to Farkas lemma.

From the normal analysis point of view, we easily show that

N̂S(x̄) ⊃ {DF (x̄)∗y∗|y∗ ∈ N̂K(F (x̄)},

and
NS(x̄) ⊂ {DF (x̄)∗y∗|y∗ ∈ NK(F (x̄)},

whenever the Robinson’s condition holds, where NS(x̄) denote the (Morduchovich) limit
normal cone to S at x̄.

On the other hand, the problem (P) can be equivalent to write as

(P
′
) min

x∈X
f(x) + IS(x).

The necessarily condition of x̄ being a local minimizer of (P
′
) is 0 ∈ ∂̂(f + IS)(x̄).

When f is a continuous convex function and S is a convex set, we have

∂(f + IS)(x̄) = ∂f(x̄) + ∂IS(x̄) = ∂f(x̄) +NS(x̄).

How to calculate the subdifferential of the sum of two functions?

In optimization, second derivatives help significantly in the understanding of optimal-
ity, especially the formulation of sufficient conditions for local optimality in the absence of
convexity. Such conditions form the basis for numerical methodology and assist in studies
of what happens to optimal solutions when the parameters on which a problem depends
are perturbed.

Theorem 1.3. (The second optimality condition) Suppose that f is twice differentiable
at x̄ ∈ intS. If f attains it local minimum at x̄, then

∇f(x̄) = 0, 〈d,∇f(x̄)d〉 ≥ 0, ∀d ∈ Rn.

Consider the second order tangent vector to a set S at x̄ ∈ S.

T 2
S(x, d) = {w ∈ X : ∃tk ↓ 0 such that d(x+ tkd+

1

2
t2kw, S) = o(t2k)}

= {d ∈ X : ∃ tk ↓ 0, wk → w s.t. x̄+ tkd+
1

2
tkwk ∈ S}.

Theorem 1.4. Assume that x̄ is a local minimum of problem (P) and that f is twice
continuously differentiable at x̄. Then for every d ∈ TS(x̄) with ∇f(x̄)Td = 0, we have

∇f(x̄)w + 〈d,∇2f(x̄)d〉 ≥ 0, for all w ∈ T 2
S(x̄, d), (1.6)

Question: How to calculate the second order tangent set and how to refor-
mulate the inequality (1.6)?

When S is defined by some constraint functions, for instance, has the form of (1.2) or
(1.3), we have the following result.
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Lemma 1.2. Assume that Mangasarian-Fromivicz condition is satisfied at x̄ ∈ S, i.e.
Then for every d ∈ TS(x̄),

T 2
S(x̄, d) = {w ∈ Rn : 〈∇gi(x̄), w〉 ≤ −〈d,∇2gi(x̄)d〉, i ∈ I00(x̄, d),

〈∇hj(x̄), w〉 = −〈d,∇2hj(x̄)d〉, j = 1, ..., q.} (1.7)

with I00(x̄, d) = {i ∈ I0(x̄) : 〈∇gi(x̄), d〉 = 0}.
Similarly, if Robinsons condition is satisfied at x̄ ∈ S then

T 2
S(x̄, d) = DF (x̄)−1[T 2

K(F (x̄), DF (x̄)d)−D2F (x̄)(d, d)]. (1.8)

It follows by Lemma 1.2 that the inequality (1.6) becomes

inf
w
∇f(x̄)w + 〈d,∇2f(x̄)d〉 ≥ 0,

s.t. 〈∇gi(x̄), w〉 ≤ −〈d,∇2gi(x̄)d〉, i ∈ I00(x̄, d),

〈∇hj(x̄), w〉 = −〈d,∇2hj(x̄)d〉, j = 1, ..., q.

or

inf
w
∇f(x̄)w + 〈d,∇2f(x̄)d〉 ≥ 0,

s.t. DF (x̄)w +DF (x̄)(d, d) ∈ T 2
K(F (x̄), DF (x̄)d).

By using duality of linear optimization problem, we can reformulate the second order
necessary condition.

2 Preliminaries from variational analysis

A great amount of functions involved in optimization problems are not differentiable.
Maximization and minimization are often useful in constructing new functions and map-
pings from given ones, but, in contrast to addition and composition, they commonly fail
to preserve smoothness. For example, the maximization of a finite many affine functions
is convex, but not differentiable. However, there are directional differentiable.

Let f : Rn → R̄ be a function,

domf = {x ∈ Rn|f(x) <∞}, epif = {(x, r) ∈ Rn × R|f(x) ≤ r}. (2.9)

Assume that f(x̄) is finite. The direction derivative of f at x̄ in the direction w is
defined as

f
′
(x̄, w) = lim

t→0

f(x̄+ tw)− f(x̄)

t
(2.10)

If f is convex, then t→ f(x̄+tw)−f(x̄)
t

is in non-increasing as t→ 0, so the limit in (2.10)
and

f
′
(x̄, w) = inf

t>0

f(x̄+ tw)− f(x̄)

t
.
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The directional derivative f
′
(x̄, w) in (2.10) dependents only in the direction of w but

not others. Instead, we can consider

f
′
(x̄, w) = lim

t↓0
w′→w

f(x̄+ tw)− f(x̄)

t
. (2.11)

If the limit exists in (2.11), we say that f is semidifferentaible(Hadamard directional
differentiable) at x̄ in the direction w. In this case f

′
(x̄, w) is continuous and positively

homogeneous in w.
Clearly, the existence of the limit in (2.11) if and only if

lim inf
t↓0

w′→w

f(x̄+ tw)− f(x̄)

t
= lim sup

t↓0
w′→w

f(x̄+ tw)− f(x̄)

t
.

When f is semidifferentiable at x̄, its continuity there, forces it to be finite on a neighbor-
hood of of x̄. So, x̄ ∈ int(domf). Therefore, semidifferentiablity can’t assist in the study
of situation where, for instance x̄ is a boundary point of domf .

Different choices of a mode of convergence for the difference quotient functions will
lead to different kind of derivatives. The situation can be avoid when the differentiablity
introduced by an approach through epi-convergence instead of continuous convergence.

2.1 Epi-derivatives and epi-differentiability

Let us first recall the following notions of upper and lower limits, in the sense of Painlevé-
Kuratowski, of a parameterized family At of subsets of Rn, where t can be real valued or,
more generally, an element of a metric space.

Definition 2.1. The following sets are called the upper (outer) and lower (inner) limits
of a parameterized family At, of subsets of Rn,

Lim sup
t→t0

At := {x ∈ X : lim inf
t→t0

d(x,At) = 0}

Lim inf
t→t0

At := {x ∈ X : lim sup
t→t0

d(x,At) = 0}

respectively.

It easily follows from the definition that the upper and lower limit sets are both closed.
These sets can be also described in terms of sequences as follows.

Lim sup
t→t0

At = {x|∃tk → t0,∃xk ∈ Atk , xk → x},

Lim inf
t→t0

At = {x|∀tk → t0,∃xk ∈ Atk , xk → x}.

If the equality in the above holds, we say At has a limit at t0.
Now let ϕt : Rn → R be a family of extended real valued functions. The lower and

upper epi-limits of ϕt, as t→ t0, are defined as
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epi(e- lim inf
t→t0

ϕt(·)) = Lim sup
t→t0

epiϕt, (2.12)

epi(e- lim sup
t→t0

ϕt(·)) = Lim inf
t→t0

epiϕt. (2.13)

Note that since the lower and upper set-limits are closed sets, the lower and upper epi-limit
functions have closed epigraphs and hence are lower semicontinuous.

We define the lower and upper directional epiderivatives of an extended real valued
function f : Rn → R, at a point x ∈ Rn such that f(x) is finite, as follows

f ↓−(x, ·) := e- lim inf
t↓0

f(x+ t·)− f(x)

t
, (2.14)

f ↓+(x, ·) := e- lim sup
t↓0

f(x+ t·)− f(x)

t
. (2.15)

Equivalently, we can write these derivatives in the following equivalent forms

f ↓−(x,w) = lim inf
t↓0

w
′→w

f(x+ tw
′
)− f(x)

t
, (2.16)

f ↓+(x,w) = sup
{tk}∈Σ0

(lim inf
k→∞
w
′→w

f(x+ tkw
′
)− f(x)

tk
), (2.17)

where Σ0 denotes the set of positive real sequences {tk} converging to zero.
Since epi-limit functions are lower semicontinuous, we have that f ↓−(x, ·) and f ↓+(x, ·)

are l. s. c. positively homogeneous functions.
We also have that

f ↓−(x,w) ≤ f ↓+(x,w), f ↓−(x,w) ≤ f
′

−(x,w), f ↓+(x,w) ≤ f
′

+(x,w). (2.18)

We say that f is directionally epidifferentiable at x, in a direction w, if f ↓−(x,w) =

f ↓+(x,w), and in that case we denote f ↓(x,w) the common value. Note that f ↓(x,w) can
be different from f

′
(x,w) even if f is convex.

If f is directionally differentiable, its second order directional derivative is defined as

f
′′
(x;h,w) := lim

t↓0

f(x+ th+ 1
2
t2w)− f(x)− tf ′(x, h)

1
2
t2

, (2.19)

provided the above limit exists. We can also define

f
′′

(x;h,w) := lim
t↓0

w
′→w

f(x+ th+ 1
2
t2w

′
)− f(x)− tf ′(x, h)
1
2
t2

. (2.20)

Note that if f has the second-order Taylor expansion at x,

f(x+ h) = f(x) +∇f(x)h+
1

2
∇2f(x)(h, h) + o(‖h‖2), (2.21)

then
f
′′
(x;h,w) = ∇f(x)w +∇2f(x)(h, h). (2.22)
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Definition 2.2. Assuming that f(x) and the respective directional epiderivatives f ↓−(x, h)

and f ↓+(x, h) are finite, we call

f ↓↓− (x;h, ·) := e- lim inf
t↓0

f(x+ th+ 1
2
t2·)− f(x)− tf ↓−(x, h)

1
2
t2

, (2.23)

f ↓↓+ (x;h, ·) := e- lim sup
t↓0

f(x+ th+ 1
2
t2·)− f(x)− tf ↓+(x, h)

1
2
t2

(2.24)

the lower and upper second order epidervatives. The lower second order epidervatives can
be characterized pointwisely (see Ben-Tal and Zowe, 1982)

f ↓↓− (x;h,w) := lim inf
t↓0

w
′→w

f(x+ th+ 1
2
t2w

′
)− f(x)− tf ↓−(x, h)
1
2
t2

. (2.25)

We say that f is second order paraboliclly directionally epidifferentiable at x in a direction
h, if f ↓↓− (x;h, ·) = f ↓↓+ (x;h, ·).

f is second order paraboliclly directionally epidifferentiable at x in a direction h if and
only if for every w ∈ Rn and for every tk ↓ 0, there exists sequence wk → w such that

f ↓↓− (x;h,w) = lim
k→∞

f(x+ tkh+ 1
2
t2kwk)− f(x)− tkf ↓−(x, h)

1
2
t2k

. (2.26)

Note again that if f(·) is Lipschitz continuous and directionally differentiable at x, then
for all h,w ∈ X we have f ↓↓− (x;h,w) = f

′′
−(x;h,w) and f ↓↓+ (x;h,w) = f

′′
+(x;h,w).

We can also consider another kind of epi-derivatives. Denote by

∆2
tf(x)(h) =

f(x+ th)− f(x)− tf ↓−(x, h)
1
2
t2

,

∆2
tf(x, v)(h) =

f(x+ th)− f(x)− t〈v, h〉
1
2
t2

, for v ∈ Rn.

Definition 2.3. The second subderivative of f at x is defined by

d2f(x)(·) := e− lim inf
t↓0

∆2
tf(x)(·), (2.27)

the second subderivative of f at x for v is defined by

d2f(x, v)(·) = e− lim inf
t↓0

∆2
tf(x, v)(·). (2.28)

If the second order difference quotient function h→ ∆2
tf(x)(h) (resp. h→ ∆2

tf(x, v)(h)),
epi-converges to some function as t ↓ 0, we say that f is twice epi-differentiable at x (resp.
for v); it is properly twice epi-differentiable at x(for v) if d2f(x)(·) (resp. d2f(x, v)(·)) is
proper.
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The second subderivative can be equivalently written as

d2f(x)(h) = lim inf
t↓0

h
′→h

f(x+ th
′
)− f(x)− tf ↓−(x, h

′
)

1
2
t2

, (2.29)

and

d2f(x, v)(h) = lim inf
t↓0

h
′→h

f(x+ th
′
)− f(x)− t〈v, h′〉

1
2
t2

. (2.30)

Clearly, f is twice epi-differentiable at x (for v) if and only if for every sequence tk ↓ 0
and every h ∈ Rn, there exists a sequence hk → h such that

d2f(x)(h) = lim
k→∞

f(x+ tkhk)− f(x)− tkf ↓−(x, hk)
1
2
t2k

, (2.31)

and

d2f(x, v)(h) = lim
k→∞

f(x+ tkhk)− f(x)− tk〈v, hk〉
1
2
t2k

. (2.32)

If f is twice epi-differentiable at x relative to v, then the second-order epi-derivative
function d2f(x, v)(·) is lower semicontinuous and positively homogeneous of degree 2.

f ↓−(x, ·) is also called the subderivative of f at x and write as df(x).

2.2 Tangent and Normal cones

Definition 2.4. For S ⊂ Rn and a point x̄ ∈ S, define the following set:
the contingent(Bouligand) cone

TS(x̄) := lim sup
t↓0

S − x̄
t

= {h ∈ Rn : ∃ tk ↓ 0, d(x̄+ tkh, S) = o(tk)}, (2.33)

the inner tangent cone

T iS(x̄) := lim inf
t↓0

S − x̄
t

= {h ∈ Rn : d(x̄+ th, S) = o(t), t ≥ 0}, (2.34)

Clarke tangent cone

T cS(x̄) := lim inf
x
′ S→x̄
t↓0

S − x′

t
(2.35)

It is clear that if x̄ ∈ S, then 0 ∈ T cS(x̄) ⊂ T iS(x̄) ⊂ TS(x̄). In general, these cones can
be different, and the Clarke tangent cone are convex, but the inner tangent cones and
contingent cone can be nonconvex.

If TS(x̄) = T iS(x̄), we say that S is geometrically derivable at x̄. It can be equivalently
characterized by there exist a constant ε > 0 and an arc ξ : [0, ε]→ S such that ξ(0) = x̄
and ξ

′
+(0) = w. For convex sets, however, the contingent, inner and Clarke tangent cones

are equal to each other, so must be geometrically derivable.
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Definition 2.5.

T i,2S (x̄, h) := lim inf
t↓0

S − x̄− th
1
2
t2

, (2.36)

T 2
S(x̄, h) := lim sup

t↓0

S − x̄− th
1
2
t2

. (2.37)

are called the inner and outer second order tangent sets, respectively, to the set S at the
point x̄ and in the direction h.

Alternatively these tangent sets can be written in the form

T i,2S (x̄, h) = {w ∈ Rn : d(x̄+ th+
1

2
t2w, S) = o(t2), t ≥ 0}, (2.38)

T 2
S(x̄, h) = {w ∈ Rn : ∃tk ↓ 0 such that d(x̄+ tkh+

1

2
t2kw, S) = o(t2k)}. (2.39)

Cleraly, T i,2S (x̄, h) ⊂ T 2
S(x̄, h).

If T i,2S (x̄, h) = T 2
S(x̄, h) for all h, we say that S be parabolically derivable at x̄ for h.

Equivalently, if for each w ∈ T 2
S(x̄, h) there are ε > 0 and an arc ξ : [0, ε] → S such that

ξ(0) = x̄ and ξ
′
+(0) = h, ξ

′′
+(0) = w.

It is well-known that if C is convex, then T i,2S (x̄, h) is convex. If in addition, C
is parabolically derivable at x̄ for h, then T 2

C(x, h) is convex. For a convex set C the
following inclusions hold

T i,2C (x, h) + TTC(x)(h) ⊂ T i,2C (x, h) ⊂ TTC(x)(h), (2.40)

T 2
C(x, h) + TTC(x)(h) ⊂ T 2

C(x, h) ⊂ TTC(x)(h). (2.41)

It follows that if 0 ∈ T 2
C(x, h), then T 2

C(x, h) = TTC(x)(h). Moreover, if 0 ∈ T i,2C (x, h), i.e.
d(x+ th, C) = o(t2), all three sets coincide, that is

T i,2C (x, h) = T 2
C(x, h) = TTC(x)(h).

If T i,2S (x, h) 6= ∅ (resp, T 2
S(x, h) 6= ∅) only if h ∈ T iS(x, h) (resp. h ∈ TS(x)).

Given the function f : Rn → R̄, f(x̄) is finite. The regular subdifferential of f at
x̄ ∈ domf is defined by

∂̂f(x̄) = {v ∈ Rn| lim inf
x→x̄

f(x)− f(x̄)− t〈v, x− x̄〉
‖x− x̄‖

≥ 0. (2.42)

It is easy to observe that the regular subgradients admits the dual representation

∂̂f(x̄) = {v ∈ Rn|〈v, w〉 ≤ f ↓−(x̄, w), ∀w ∈ Rn}. (2.43)

The subdifferential of f at x̄ is given by

∂f(x̄) = {v ∈ Rn|∃xk
f→ x̄, vk → v with vk ∈ ∂̂f(xk), (2.44)
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where xk
f→ x̄ stands for xk → x̄ and f(xk)→ f(x̄).

The proximal subdifferntial of f at x̄ is given by

∂pf(x̄) = {v ∈ Rn|∃σ > 0, δ > 0 s. t. f(x) ≥ f(x̄) + 〈v, x− x̄〉− σ
2
‖x− x̄‖2,∀‖x− x̄| < δ}

(2.45)
It is well-known that the inclusions ∂pf(x̄) ⊂ ∂̂f(x̄) ⊂ ∂f(x̄) always hold and

∂f(x̄) = lim sup
x

f→x̄

∂pf(x).

Given a nonempty set S ⊂ Rn, the proximal and regular normal cones to S at x̄ ∈ S
are defined, respectively, by

Np
S(x̄) = ∂pδS(x̄), (2.46)

N̂S(x̄) = ∂̂δS(x̄). (2.47)

Similarly, we define the (limiting/Mordukhovich) normal cone of S at x̄ by NS(x̄) :=
∂δS(x̄).

2.3 Preliminary properties

Proposition 2.1. Let f : Rn → R̄ be an extended real valued function and let x ∈ X be
a point such that f(x)is finite. Then

Tepif (x, f(x)) = epif ↓−(x, ·) (2.48)

T iepif (x, f(x)) = epif ↓+(x, ·). (2.49)

Proof. By the definition, we have that the epigraph of f ↓−(x, ·) coincides with the

upper set limit of epi{f(x+t·)−f(x)
t

} = epif−(x̄,f(x̄))
t

, as t→ 0. Together with the definition of
the contingent cones, this implies the first equation. The second equation can be proved
similarly. ut

Similarly, we can prove the following results.

Proposition 2.2. Let f : Rn → R be an extended real valued function taking a finite
value at a point x ∈ X. Then

T i,2epif [(x, f(x)), (h, f ↓+(x, h))] = epif�
+ (x;h, ·), (2.50)

T 2
epif [(x, f(x)), (h, f ↓−(x, h))] = epif�

− (x;h, ·), (2.51)

provided the respective values f ↓−(x, h) and f ↓+(x, h) are finite (h ∈ Tdomf (x̄)).

It is clear that epif is derivable at (x, f(x) if and only if f is parabolically epi-
differentiable at x̄ in h and epif is parabolically derivable at (x, f(x) for (h, f ↓−(x, h))
if and only if f is second order parabolically epi-differentiable at x̄ in h.

We say a function f : Rn → R̄ is called Lipschitz continuous around x̄ relative to
C ⊂ domf with constant ` > 0 if x̄ ∈ C and there exists a neighborhood U of x̄ such that

‖f(x1)− f(x2)| ≤ `‖x1 − x2‖ ∀x1, x2 ∈ U ∩ C. (2.52)
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Such a function is called locally Lipschitz continuous relative to C if for every x̄ ∈ C, this
function is Lipschitz continuous around x̄ relative to C. Piecewise linear-quadratic func-
tions (not necessarily convex) and an indicator function of a nonempty set are important
examples of functions that are locally Lipschitz continuous relative to their domains.

Proposition 2.3. Suppose that f : Rm → R̄ is Lipschitz continuous around x̄ relative to
its domain. Then

(i) domf ↓−(x̄, ·) = Tdomf (x̄) and for every h ∈ Tdomf (x̄), f ↓−(x̄, h) is finite.
(ii) If, in addition, f is parabolically epi-differentiable at x̄ for h. then domf is

parabolically derivable at x̄ for h and

T 2
domf (x̄, h) = domf ↓↓− (x, h, ·). (2.53)

Example 2.1. Let S be a non empty closed convex subset of Rn, δS(·) is a proper l.s.c.
convex function. Consider the set consider the set K := epiδS = S×R+ and x ∈ S. Then
δ↓(x, ·) = δTS(x)(·). Given a vector h ∈ TS(x). It is not difficult to see that

δ�+(x;h,w) =

{
0, if w ∈ T i,2S (x, h),
+∞, otherwise.

(2.54)

δ�−(x;h,w) =

{
0, if w ∈ T 2

S(x, h),
+∞, otherwise.

(2.55)

Moreover, we have

T i,2K ((x, 0), (h, γ)) =


T i,2S (x, h)× R, if γ > 0,

T i,2S (x, h)× R+, if γ = 0,
∅, if γ < 0,

(2.56)

and

T 2
K((x, 0), (h, γ)) =


T 2
S(x, h)× R, if γ > 0,
T 2
S(x, h)× R+, if γ = 0,
∅, if γ < 0,

(2.57)

Therefore the following conditions are equivalent:(i) the set K := epiδS is parabolically
derivable at (x, 0), (ii) the set S is parabolically derivable at x, and (iii) the function δS
is parabolically epidifferentiable at x̄.

Proposition 2.4. Let x̄ be such that f(x̄) is finite, for a given h ∈ Rn, let v ∈ Rn be
such that 〈v, h〉 = f ↓−(x, h). Then

inf
w∈X
{f ↓↓− (x̄;h,w)− 〈v, w〉} ≥ d2f(x̄, v)(h). (2.58)

Proof. Let wk → w, tk ↓ 0 be such that

f ↓↓− (x;h,w) = lim
k→∞

f(x+ tkh+ 1
2
t2kwk)− f(x)− tkdf(x)(h)

1
2
t2k

(2.59)

and take h
′

k := h+ 1
2
tkwk in the definition of d2f(x, v)(h). We obtain then that

d2f(x, v)(h) ≤ lim inf
k→∞

f(x+ tkh+ 1
2
t2kwk)− f(x)− tkdf(x)(h)− 1

2
t2k〈v, wk〉

1
2
t2k

.
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It follows that for any w ∈ Rn,

d2f(x, v)(h) ≤ f ↓↓− (x;h,w)− 〈v, w〉.

By taking the infimum of the right hand side of the above inequality over all w ∈ Rn, we
obtain the desired result. ut

Proposition 2.5. (properties of second subderivative). Let f : Rn → R taking finite value
at x̄, v̄ ∈ Rn. Then the following conditions hold:

(i) if d2f(x̄, v̄) is a proper function, then we always have

domd2f(x̄, v̄) ⊂ {h ∈ Rn|f ↓−(x̄, h) = 〈v̄, h〉}, (2.60)

Moreover, the equality holds if, in addition, domf ↓↓− (x;h, ·) 6= ∅;
(ii) if v̄ ∈ ∂̂f(x̄), then for any w ∈ Rn we have d2f(x̄, v̄)(h) ≥ −σ‖h‖. In particular,

d2f(x̄, v̄) is a proper function.

Proof. Note that

d2f(x̄, v̄)(w) = lim inf
t↓0

w
′→w

f(x̄+ tw
′
)− f(x̄)− t〈v̄, w′〉

1
2
t2

= lim inf
t↓0

w
′→w

f(x̄+tw
′
)−f(x̄)
t

− 〈v̄, w′〉
1
2
t

It is easily to see that (i) holds by the definition and (2.58). By the definition of proximal
subdifferential (2.45), as t ↓ 0, w

′ → w, we have ‖x̄ + tw
′ − x̄‖ < δ, the assertion (ii)

follows.
Proposition 2.2 implies that f�

− (x;h, ·) and f�
+ (x;h, ·) are lower semicontinuous func-

tions. If, in addition, f is parabolically derivable at x̄ for h, then f�
− (x;h, ·) = f�

+ (x;h, ·)
is lower semicontinuous and convex. It follows from Proposition 2.4 and Proposition 2.5
that f ↓↓− (x;h, ·) is also proper whenever domf ↓↓− (x;h, ·) 6= ∅ and there exists v̄ ∈ ∂̂f(x̄)
such h ∈ Kf (x̄, v̄).

3 Twice epi-Differetiability for composite function

3.1 Parabolic regularity

Let f : Rn → R̄, f(x̄) is finite and pick v̄Rn. The critical cone of f at (x̄, v̄) is defined by

Kf (x̄, v̄) := {h ∈ Rn|df(x̄)(h) = 〈v, h〉}. (3.61)

Definition 3.1. It is said that the function f is parabolically regular at x̄ for v̄ in h ∈ Rn

if
inf
w∈Rn
{f ↓↓− (x̄;h,w)− 〈v̄, w〉} = d2f(x̄, v̄)(h). (3.62)

A nonempty set S ⊂ Rn is said to be parabolically regular at x̄ for v̄ if the indicator
function δS is parabolically regular at x̄ for v̄.
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The parabolical regularity of f at x̄ can be equivalent characterized as following.

Proposition 3.1. f is parabolically regular at x̄ for v̄ ∈ ∂̂f(x̄) if for every h ∈ domd2f(x̄, v̄),
there exist, among the sequences tk ↓ 0 and hk → h with ∆2

tk
f(x, v)(hk) → d2f(x̄, v̄)(h),

ones with additional property that

lim sup
k→∞

‖hk − h‖
tk

<∞. (3.63)

Moreover, for every h ∈ domd2f(x̄, v̄), there exists w ∈ Rn such that

d2f(x̄, v̄)(h) = f ↓↓− (x̄;h,w)− 〈v̄, w〉.

Proof Since v̄ ∈ ∂̂f(x̄), we know that d2f(x̄, v̄)(h) ≥ −σ‖h‖ > −∞. If h ∈ Kf (x̄, v̄) \
dom d2f(x̄, v̄) then, by (2.58), we have that (3.62) holds. Therefore, we can assume
that d2f(x̄, v)(h) is finite. Let hk → h and tk → 0 be sequences at which the limit in the
definition of d2f(x̄, v)(h) is attained. Consider wk := (1

2
tk)
−1(hk−h), i.e., hk = h+ 1

2
tkwk,

and xk = x+ tkh+ 1
2
t2kwk. Then

d2f(x̄, v̄)(h) = lim
k→∞

f(x̄+ tkhk)− f(x̄)− tk〈v̄, hk〉
1
2
t2k

= lim
k→∞

f(x̄+ tkh+ 1
2
t2kwk)− f(x̄)− tk〈v̄, h〉

1
2
t2k

− 〈v̄, wk〉.

Since {wk} is bounded, without loss of generality, we may assume that wk → w. Hence

d2f(x̄, v̄)(h) ≥ f ↓↓− (x̄;h,w)− 〈v̄, w〉.

Combining (2.4), we get

d2f(x̄, v̄)(h) = inf
w
{f ↓↓− (x̄;h,w)− 〈v̄, w〉}.

The left side of (3.62) is identical to the lowest limit attainable for

lim
k→∞

f(x̄+ tkh+ 1
2
t2kwk)− f(x̄)− tk〈v̄, h〉

1
2
t2k

− 〈v̄, wk〉.

relative to tk ↓ 0 and a bounded sequence of vectors wk (as seen from the cluster points
w of such a sequence). In terms of hk = h + 1

2
tkwk , which corresponds to {hk−h

tk
} is

bounded. ut

Definition 3.2. We say that the set K is outer second order regular at a point y ∈ K in
direction d ∈ TK(y), if for any sequence yk ∈ K of the form yk = y+ td+ 1

2
t2kwk, satisfying

tk ↓ 0, tkwk → 0, the following condition holds:

lim
k→∞

d(wk, T
2
K(y, d)) = 0. (3.64)

We say that K is second order regular at y if K is parabolically derivable and outer second
order regular at y in all direction d ∈ TK(y).
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For example, the cone of positive semidefinite matrices, the second order cone are
second order regular.

Definition 3.3. Let f : X → R̄. We say that f(·) is (outer) second order regular at x̄ in
the direction h if df(x̄)(h) is finite and the set K = epif is (outer) second order at the
point (x̄, f(x̄)) in the direction (h, df(x̄)(h)).

For example, the leading eigenvalue functions of symmetric matrix is the second order
regular function.

Proposition 3.2. Let f : X → R̄, (x̄, v̄) ∈ gph∂f , and h ∈ Kf (x̄, v̄) with d2f(x, v)(h) >
−∞. Then f is parabolically regular at x for v̄ in the direction h, if the function f is
outer second order regular at x̄ in the direction h.

Proof. If d2f(x̄, v)(h) = +∞ then, by (2.58), we have that (3.62) holds. Therefore,
we can assume that d2f(x̄, v)(h) is finite. Note that because of 〈v, h〉 = df(x̄)(h), we have
that df(x̄)(h) is finite.

Suppose that f is outer second order regular at x̄ in the direction h. Let hk → h
and tk → 0 be sequences at which the limit in the definition of d2f(x̄, v)(h) is attained.
Consider wk := (1

2
tk)
−1(hk − h), i.e., hk = h + 1

2
tkwk, and xk = x + tkh + 1

2
t2kwk. Then

tkwk → 0 and

d2f(x̄, v)(h) = lim
k→∞

f(xk)− f(x̄)− tkdf(x̄)(h)− 1
2
t2k〈v, wk〉

1
2
t2k

. (3.65)

Consider

ck :=
f(xk)− f(x̄)− tkdf(x̄)(h)

1
2
t2k

.

Since tkwk → 0 and d2f(x, v)(h) is finite, because of (3.65) we have that tkck → 0. Then
by formula

T 2
epif [(x̄, f(x)), (h, df(x̄)(h)] = epif�

− (x̄;h, ·),
it follows from the outer second order regularity of f that

d((wk, ck), epif ↓↓− (x̄, h, ·))→ 0.

It follows that there exists (w
′

k, c
′

k) ∈ epif ↓↓− (x̄, h, ·) such that

(wk, ck)− (w
′

k, c
′

k)→ (0, 0).

This implies that

f(xk) ≥ f(x̄) + tkdf(x̄)(h) +
1

2
t2kf
↓↓
− (x̄, h, w

′

k) + o(t2k).

It follows from (3.65) that

d2f(x̄, v)(h) ≥ lim inf
k→∞

{f ↓↓− (x̄;h,w
′

k)− 〈v, w
′

k〉+ 〈v, wk − w
′

k〉}.

Since 〈v, wk − w
′

k〉 → 0, it follows that d2f(x̄, v)(h) is greater than or equal to the left
hand side of (3.62), and hence the equality follows. ut

Note that if v ∈ ∂̂f(x̄), then the numerator of the radio inside the limit in (3.65)
is nonnegative, and hence d2f(x̄, v)(h) ≥ 0. Therefore, in this case, the assumption
d2f(x̄, v)(h) > −∞ in the above proposition is superfluous.
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Theorem 3.1. (twice epi-differenitability of parabolically regular functions) Let f : Rn →
R and v̄ ∈ ∂̂f(x̄) and let f be parabolically epi-differentiable at x̄ for every h ∈ Kf (x̄, v̄).
If f is parabolically regular at x̄ for v̄, then it is properly twice epi-differentiable at x̄ for
v̄ with

d2f(x̄, v̄)(h) =

{
minw∈Rn{f ↓↓− (x̄;h,w)− 〈v̄, w〉} if h ∈ Kf (x̄, v̄) ,

+∞, otherwise.
(3.66)

Proof. It follows from the parabolic epi-differentiability of f at x̄ for every h ∈
Kf (x̄, v̄) and Proposition 2.5 that domd2f(x̄, v̄) = Kf (x̄, v̄). This together with propo-
sition 3.1 justifies the second subderivative formula (3.66). To establish the twice epi-
differentiability of f at x̄ for v̄, we are going to show that (2.32) holds for all h ∈ Rn.
Pick h ∈ Kf (x̄, v̄) and an arbitrary sequence tk ↓ 0. Since f is parabolically regular at x̄
for v̄, by Proposition 3.1, we find w ∈ Rn such that

d2f(x̄, v̄)(h) = f ↓↓− (x̄;h,w)− 〈v̄, w〉. (3.67)

By the parabolic epi-differentiability of f at x̄ for h, we find a sequence wk → w for which
we have

f ↓↓− (x̄;h,w) = lim
k→∞

f(x+ tkh+ 1
2
t2wk)− f(x̄)− tkdf(x̄)(h)

1
2
t2k

. (3.68)

Define hk := h+ 1
2
wk for all k. Using this and h ∈ Kf (x̄, v̄), we obtain

∆2
tk
f(x̄, v̄)(hk) = lim

k→∞

f(x̄+ tkhk)− f(x̄)− tk〈v̄, hk〉
1
2
t2k

= lim
k→∞

f(x̄+ tkh+ 1
2
t2kwk)− f(x̄)− tk〈v̄, h〉

1
2
t2k

− 〈v̄, wk〉.

This together with (3.67) and (3.68) results in

lim
k→∞

∆2
tk
f(x̄, v̄)(hk) = f ↓↓− (x̄;h,w)− 〈v̄, w〉 = d2f(x̄, v̄)(h)

which justifies (2.32) for every h ∈ Kf (x̄, v̄). Finally, we are going to show the validity
of (2.32) for every h 6∈ Kf (x̄, v̄). For any such a h, we see that d2f(x̄, v̄)(h) =∞. Hence
d2f(x̄, v̄)(h) = e− lim supt↓0 ∆2

tf(x̄, v̄)(h) =∞. This completes the proof of the Theorem.
ut

Proposition 3.3. (conjugate of twice parabolic epiderivatives ) Let f : Rn → R be a proper
lower semicontinuous and convex function, and v̄ ∈ ∂̂f(x̄), and let f be parabolically epi-
differentiable at x̄ for every h ∈ Kf (x̄, v̄). If f is parabolically regular at x̄ for v̄, then

φ(w) := f ↓↓− (x̄;h,w) is proper l.s.c. and convex functions and its conjugate function is
given by

φ∗(v) =

{
−d2f(x̄, v̄)(h) if v ∈ A(x̄, h) ,

+∞, otherwise,
(3.69)

where A(x̄, h) = {v ∈ ∂f(x̄)|df(x̄)(h) = 〈v, h〉}.
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Proof. We know that φ is proper lower semicontinuous and convex function. Pick
v ∈ A(x̄, h), the formula (3.69) is clearly true duo to Theorem 3.1. Assume now that
v 6∈ A(x̄, h). This means either v̄ 6∈ ∂f(x̄) or df(x̄)(h) 6= 〈v̄, h〉. Define the parabolic
difference quotients for f at x̄ for h by

∆t,x̄,hf(w) =
f(x̄+ th+ 1

2
t2w)− f(x̄)− df(x̄)(h)

1
2
t2

, w ∈ Rn, t > 0.

It is not hard to see that ∆t,x̄,hf(w) are proper, convex, and

(∆t,x̄,hf)∗(v) =
f(x̄) + f ∗(v)− 〈v, x̄〉

1
2
t2

+
df(x̄)(h)− 〈v, h〉

1
2
t

, v ∈ Rn

Remember that by the parabolic epi-differentiability of f at x̄ for h amounts to the sets
epi∆t,x̄,hf(·) converging to epiφ as t ↓ 0 and that the functions ∆t,x̄,hf(·) and φ are proper,
l.s.c. and convex. Appealing to [14, Theorem 11.34] tells us that the former is equivalent
to the sets epi(∆t,x̄,hf)∗ converging to epiφ∗ as t ↓ 0 This, in particular, means that for
any sequence tk ↓ 0, there exists a sequence vk → v̄ such that

φ∗(v̄) = lim
k→∞

(∆tk,x̄,hf)∗(vk).

If v̄ 6∈ ∂f(x̄), then we have

f(x̄) + f ∗(v)− 〈v, x̄〉 > 0.

Since f ∗ is l.s.c., we get

lim inf
k→∞

f(x̄) + f ∗(vk)− 〈vk, x̄〉
1
2
tk

+
df(x̄)(h)− 〈vk, h〉

1
2

≥ ∞

which in turn confirms that

φ∗(v̄) = lim
k→∞

(∆tk,x̄,hf)∗(vk) =∞.

If v̄ ∈ ∂f(x̄) but 〈v, h〉 < df(x̄)(h). Since we always have

f(x̄) + f ∗(vk)− 〈vk, x̄〉 ≥ 0,

we arrive at

φ∗(v̄) ≥ lim
df(x̄)(h)− 〈vk, h〉

1
2
tk

=∞.

ut

Example 3.1. (piecewise linear-quadratic functions). Assume that the function f : Rn →
R̄ with is convex piecewise linear-quadratic. That is if domf = ∪pi=1Ci with Ci being
polyhedral convex sets for i = 1, ..., p, and if f has a representation of the form

f(x) =
1

2
〈Aix, xi〉+ 〈ai, xi〉+ αi for all x ∈ Ci, (3.70)
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Where Ai is an n× n symmetric matrix, ai ∈ Rn, and αi ∈ R for i = 1, , p. It was proven
in [14, Propsoition 13.9] that the second subderivative of f at x̄ for v̄ ∈ ∂f(x̄) can be
calculated by

d2f(x̄, v̄)(h) =

{
〈Ai, h〉 if h ∈ TCi

(x̄) ∩ {v̄i}⊥

∞ otherwise,
(3.71)

where v̄i = v̄ − Aix̄ − ai. To prove the parabolic regularity of f at x̄ for v̄, pick a vector
h ∈ Rn with d2f(x̄, v̄)(h) < ∞. This implies that there is an i with 1 ≤ i ≤ p such that
h ∈ TCi

(x̄) ∩ {v̄i}⊥ Since Ci is a polyhedral convex set, there exists an τ > 0 such that
x̄ + th ∈ Ci for all t ∈ [0, τ ]. Pick a sequence tk ↓ 0 such that tk ∈ [0, τ ] and let hk := h
for all k = 1, 2, . . . ,. Thus a simple calculation tells us that

∆2
tk
f(x̄, v̄)(hk) = 〈Aih, h〉+

〈hk, v̄ − Aix̄− ai〉
1
2
t2k

= 〈Aih, h〉, (3.72)

which clearly implies that ∆2
tk
f(x̄, v̄)(hk)→ d2f(x̄, v̄)(h) as k →∞ with lim supk→∞

‖hk−h‖
tk

=
0 < ∞. Hence, f is parabolic regular at x̄ for v̄. This function is also parabolical epi-
differentiable at x̄ for v̄.

Another example for parabolic regularity and parabolical epi-differentiable function
is the sum of the k largest eigenvalues functions for symmetric matrix is parabolically
regular.

3.2 First/second second order chain rules of subderivatives

Definition 3.4. We say that the set-valued mapping Ψ: Rn ⇒ Rm is metric regular at a
point (x̄, ȳ) ∈ grΨ, at a rate c, if there exist neighbourhood U of x̄ and V of ȳ,

d(x,Ψ−1(y)) ≤ cd(y,Ψ(x)) ∀x ∈ U, y ∈ V. (3.73)

If y = ȳ in (3.73), the set-valued mapping Ψ is said to be metric subregular (x̄, ȳ). The
infimum of the set of values c for which this holds is the modulus of metric regularity,
denoted by regΨ(x̄, ȳ).

Consider the constraint system Ψ(x) = F (x)−K, where F : Rn → Rm is a continuously
differentiable mapping and K ⊂ Rm a closed set.

Definition 3.5. We say that Robinson’s constraint qualification holds at a point x̄ ∈ Rn

such that F (x̄) ∈ K, with respect to the mapping F (·) and the set K, if the following
condition holds:

0 ∈ int{F (x̄) +DF (x̄)Rn −K} (3.74)

The set-valued mapping Ψ(x) = F (x)−K is metric regular at (x̄, 0), i.e., there exist
neighborhoods U of x̄ and V of 0 and a constant number c > 0 such that

d(x, F−1(K − y)) ≤ cd(F (x) + y,K) ∀x ∈ U, y ∈ V. (3.75)

It is well known that Ψ is metric regular at (x̄, 0) if and only if

y∗ ∈ NK(F (x̄)), DF (x̄)∗y∗ = 0⇒ y∗ = 0 (3.76)
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and both are equivalent to (3.74) whenever K is convex.
Set C := {x ∈ Rn|F (x) ∈ K} and x̄ ∈ C. Then we always have

TC(x̄) ⊂ {h ∈ Rn|DF (x̄)h ∈ TK(F (x̄))}; (3.77)

T 2
C(x̄, h) ⊂ {w ∈ Rn|DF (x̄)w + 〈h,DF (x̄)h〉 ∈ T 2

K(F (x̄), DF (x̄)h)}, (3.78)

and the equality hold whenever (3.75) is satisfied. C is parabolically derivable at x for h
whenever K is Clarke regular at F (x̄) and parabolically derivable at F (x̄) for DF (x̄)h)
(in particular K is convex ) under the assumption of (3.76).

Proposition 3.4. Let F : Rn → Rm be a continuously differentiable mapping and g : Rn →
R̄ be l.s.c. convex function takeing a finite value at point ȳ = F (x̄). Suppose that Robin-
son’s constraint qualification condition

0 ∈ int{F (x̄) +DF (x̄)Rn − domg} (3.79)

holds. Then the lower and upper directional epiderivatives of the composite function ψ :=
g ◦ F coincide at x̄, and

(ψ)↓(x̄, h) = g↓(F (x̄), DF (x̄)h). (3.80)

Proof. Let K̂ := epig and F̂ (x, α) := (F (x), α), α ∈ R. It is not difficult to verify
that F̂−1(K̂) = epi(g ◦F ) and that (3.79) implies that Robinson’s constraint qualification
for the set K̂ and the mapping F̂ , at (x̄, g(F (x̄))), i.e.

0 ∈ int
{ [ F (x̄)

g(F (x̄)

]
+

[
DF (x̄)Rn

R

]
− epig

}
.

It follows that

Tepi(g◦F )(x̄, (g ◦ F )(x̄)) = DF̂ (x̄, α)−1Tepi(g)(F̂ (x̄), g(F (x̄))). (3.81)

ut
The following second order chain rules can be proved in a similar way.

Theorem 3.2. Let F : Rn → Rm be a twice continuously differentiable mapping and
g : Rm → R be a l.s.c. convex function taking a finite value at a point ȳ := F (x̄). Suppose
that Robinson’s constraint qualification 0 ∈ int{F (x̄)+DF (x̄)Rn−domg} holds. Then, we
have the following formula for twice parabolically lower epiderivative of composite function
ψ = g ◦ F provided g↓(F (x̄), DF (x̄)h) is finite.

ψ�
−(x̄;h,w) = g�−(F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h)), (3.82)

ψ�
+(x̄;h,w) = g�+(F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h)), (3.83)

We have the following result concerning outer second order regularity of composite
function
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Proposition 3.5. Let F : Rn → Rm be a twice continuously differentiable mapping,
g : Rm → R̄ a lower semicontinuous convex function taking a finite value at a point
ȳ := F (x̄), and h ∈ Rn and λ ∈ ∂g(ȳ) satisfying DF (x̄)h ∈ Kg(F (x̄), λ). Suppose that
g is outer second order regular at ȳ in the direction DF (x̄)h, and that Robinson’s con-
straint qualification 0 ∈ int{F (x̄)+DF (x̄)X−domg} holds. Then the composite function
ψ = g ◦ F is outer second order regular at x̄ in the direction h.

Theorem 3.3. Let F : Rn → Rm be a twice continuously differentiable mapping, g : Rm →
R̄ a lower semicontinuous convex function taking a finite value at a point ȳ := F (x̄),
h ∈ Rn and λ ∈ ∂g(ȳ) satisfying DF (x̄)h ∈ Kg(F (x̄), λ). Suppose that g is outer second
order regular at ȳ in the direction DF (x̄)h, and that Robinson’s constraint qualification
0 ∈ int{F (x̄) + DF (x̄)Rn − domg} holds. Then the composite function ψ = g ◦ F is
parabolically regular at x̄ in the direction h for v := [DF (x̄)]∗λ, and

ψ↓↓− (x̄;h,w) = g↓↓− (F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h)); (3.84)

and

d2ψ(x̄, v)(h) = inf
w∈X
{g↓↓− (F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h))− 〈v, w〉}. (3.85)

Proof. By Proposition 3.5, it follows from outer second order regularity of g that the
composite function g ◦ F is outer second order regular at x̄ in direction h. Also, since
λ ∈ ∂g(ȳ) and F (x̄+ th

′
) = F (x̄) + tDF (x̄)h

′
+ o(t) for h

′ → h and t ↓ 0, we have

g(F (x̄+ th
′
))− g(F (x̄))− t〈λ,DF (x̄)h

′〉 ≥ o(t),

and hence d2(g◦F )(x̄, v)(h) ≥ 0. By Proposition 3.2, the parabolic regularity of g◦F then
follows. Formula (3.85) follows from (3.84) and the corresponding formula from Theorem
3.2 for the lower second order epiderivative of the composite function. ut

Consider the composite function ψ(x) = g(F (x)), where F : Rn → Rm a twice differ-
entiable at x̄ and g : Rm → R̄ is proper, l.s.c., convex, and Lipschitz continuous around
F (x̄) relative to its domain. It is easy to see that

domψ = {x ∈ Rn|F (x) ∈ domg}.

It is clear that the Robinson condition (3.79) implies that Ψ(x) = F (x) − domg is
metric subregular at (x̄, 0), i.e., if there exist a constant c > 0 and a neighbourhood U of
x̄,

d(x, domψ)) ≤ κd(F (x), domg) ∀x ∈ U. (3.86)

Theorem 3.4. Let F : Rn → Rm be differentiable at x̄ and g : Rm → R̄ be Lipschitz
continuous around F (x̄) relative to its domain. If the metric subregularity constraint
qualification (3.86) hold, then the following hold:

(i) for any h ∈ Rn, the following subderivative chain rule for ψ at x̄ holds:

dψ(x̄)(h) = dg(F (x̄))(DF (x̄)h);

(ii) we have the chain rules

Tdomψ(x̄) = {h ∈ Rn|DF (x̄)h ∈ Tdomg(F (x̄))}.

If, in addition, F is continuously differentiable at x̄, g is convex, then

∂ψ(x̄) = DF (x̄)∗∂g(F (x̄)).
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Proof. Since F (x) is continuously differentiable at x̄,

F (x̄+ th) = F (x̄) + tDF (x̄)h+ o(t‖h‖).

It is easy to show that

Tdomψ(x̄) ⊂ {h ∈ Rn|DF (x̄)h ∈ Tdomg(F (x̄))}.

Take h being such that DF (x̄)h ∈ dom dg(F (x̄)), there exist sequences tk ↓ 0 and
vk → DF (x̄)h such that F (x̄) + tkvk ∈ domg for all k ≥ 1. Then the (3.86) yields

d(x̄+ tkh, domψ) ≤ κd(F (x̄+ tkh), domg), k ≥ 1, (3.87)

which in turn implies

d(x̄+ tkh, domψ)

tk
≤ κ

tk
d(F (x̄) + tkDF (x̄)h+ o(tk), domg)

≤ κ

tk
‖F (x̄) + tkDF (x̄)h+ o(tk)− F (x̄)− tkvv‖)

= κ‖DF (x̄)h− vk +
o(tk)

tk
‖ ∀k ≥ 1. (3.88)

This implies that h ∈ Tdomψ(x̄).
For any h ∈ Rn, we have

dψ(x̄)(h) = lim inf
t↓0

h
′→h

g(F (x̄+ th
′
))− g(F (x̄))

t

= lim inf
t↓0

h
′→h

g(F (x̄) + tDF (x̄)h
′
+ o(t‖h‖))− g(F (x̄))

t

= lim inf
t↓0

h
′→h

g(F (x̄) + tDF (x̄)h
′
+ o(t‖h‖))− g(F (x̄))

t

≥ dg(F (x̄))(DF (x̄)h).

Take any h ∈ Rn and observe from the Lipschitz continuity of g around F (x̄) relative
to its domain that dg(F (x̄))(DF (x̄)h) > −∞. Since the converse inequality is obvious if
dg(F (x̄))(DF (x̄)h) =∞, we may assume that the value dg(F (x̄))(DF (x̄)h) is finite, i,e.,
By definition, there exist sequences tk ↓ 0 and vk → DF (x̄)h such that

dg(F (x̄))(DF (x̄)h) = lim
k→∞

g(F (x̄) + tkvk))− g(F (x̄))

tk
<∞.

Suppose without lost of generality that F (x̄)+ tkvk ∈ domg for all k ≥ 1. From the above
proof, we see that there exist hk ∈ domψ−x̄

tk
satisfying

‖hk − h‖ ≤ κ‖DF (x̄)h− vk +
o(tk)

tk
‖+

1

k
.
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It follows that hk → h ∈ as k →∞. Therefore,

dg(F (x̄))(DF (x̄)h)

= lim
k→∞

[g(F (x̄+ tkhk))− g(F (x̄))

tk
+
g(F (x̄) + tkvk)− g(F (x̄+ tkhk))

tk
‖
]

≥ lim inf
k→∞

g(F (x̄+ tkhk))− g(F (x̄))

tk
− ` lim

k→∞
‖F (x̄+ tkhk)− F (x̄)

tk
− vk‖

≥ dψ(x̄)(h)

We remain to prove that

∂ψ(x̄) = DF (x̄)∗∂g(F (x̄))

whenever F is continuously differentiable at x̄, g is convex.
The inclusion ∂ψ(x̄) ⊃ DF (x̄)∗∂g(F (x̄)) always hold. The inclusion

∂ψ(x̄) ⊂ DF (x̄)∗∂g(F (x̄))

is a very fundamental calculus formula in variational analysis. It is well know that this is
true under Robinson’s condition (3.79). It was proved under the weaker condition (3.86)
in [6] very recently. This inclusion has also been proved under (3.86) in special case g is
a indicator function of a closed convex set and F is Lipschitz continuous in [4, 5].

This Theorem remains true if we replace the metric subregularity condition (3.86) by
the assumption that Ψ is metric-regula at (x̄, 0) and epig is Clarke regular at (x̄, g(x̄)).

Theorem 3.5. Suppose that F : Rn → Rm is twice differentiable at x̄ and g : Rm →
R̄ is proper, l.s.c., convex and Lipschitz continuous around F (x̄) relative to its domain
and suppose that the metric subregularity constraint qualification (3.86) hold. If g is
parabolically epi-differentiable at ȳ := F (x̄) in the direction DF (x̄)h with h ∈ Tdomf (x̄),
then f is parabolically epi-differentiable at x̄ for h and the following conditions hold:

(i) for every w ∈ Rn,

ψ↓↓− (x̄;h,w) = g↓↓− (F (x̄);DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h)); (3.89)

(ii)

domψ↓↓− (x̄;h, ·) = T 2
domψ(x̄, h)

= {w ∈ Rn|DF (x̄)w + 〈h,DF (x̄)h〉 ∈ T 2
domg(F (x̄), DF (x̄)h)}.

Proof. It is easy to show that

T 2
domψ(x̄, h) ⊂ {w ∈ Rn|DF (x̄)w + 〈h,DF (x̄)h〉 ∈ T 2

domg(F (x̄), DF (x̄)h)}.

Let w be satisfying

z := DF (x̄)w + 〈h,DF (x̄)h〉 ∈ T 2
domg(F (x̄), DF (x̄)h). (3.90)

Then there exists tk ↓ 0, zk → z such that

F (x̄) + tkDF (x̄)h+
1

2
t2kzk ∈ domg (3.91)
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Let xk := x̄+ tkh+ 1
2
t2kw. Then by (3.86) we have

d(xk, domψ) ≤ cd(F (xk), domg)

≤ c‖F (xk)− F (x̄)− tkDF (x̄)h− 1

2
t2kzk‖

= c‖1

2
t2k(DF (x̄)w + 〈h,DF (x̄)h〉) + o(t2k)−

1

2
t2kzk‖

It follows that d(xk,domψ)

t2k
→ 0 and so w ∈ T 2

domψ(x̄, h).

Since F is twice continuously differentiable at x̄, it is not hard to prove that for every
w ∈ Rn, z = DF (x̄)w + 〈h,DF (x̄)h〉,

g↓↓(F (x̄);DF (x̄)h, z) ≤ ψ↓↓− (x̄, h, w). (3.92)

For every w ∈ T 2
domψ(x̄, h), there exist exists tk ↓ 0, wk → w such that

xk := x̄+ tkh+
1

2
t2kwk ∈ domψ.

Since g is parabolically epi-differentiable at ȳ := F (x̄) in the direction DF (x̄)h, we have
domg↓↓− (F (x̄), DF (x̄)h), ·) 6= ∅ and for z and the above tk ↓ 0, there exist zk → z such
that

g↓↓− (F (x̄);DF (x̄)h), z) = lim
k→∞

g(F (x̄) + tkDF (x̄)h+ 1
2
t2kzk)− g(F (x̄))− tkdg(F (x̄), DF (x̄)h))

1
2
t2k

.

Since z ∈ T 2
domg(F (x̄), DF (x̄)h) = domg↓↓− (F (x̄);DF (x̄)h), ·) due to Proposition 2.3, we

have g↓↓− (F (x̄);DF (x̄)h), z) <∞. It follows that yk := F (x̄) + tkDF (x̄)h+ 1
2
t2kzk ∈ domg

for k sufficiently large. By the Lipschitz property of g we obtain

ψ↓↓− (x̄;h,w)

= lim inf
k→∞

ψ(x̄+ tkh+ 1
2
wk))− ψ(x̄)− tkdψ(x̄, h)

1
2
t2k

≤ lim sup
k→∞

g(F (xk))− g(F (x̄))− tkdg(F (x̄), DF (x̄)h))
1
2
t2k

≤ lim sup
k→∞

g(yk)− g(F (x̄)− tkdg(F (x̄)), DF (x̄)h))
1
2
t2k

+ lim sup
k→∞

g(F (xk))− g(yk)
1
2
t2k

≤ g↓↓(F (x̄);DF (x̄)h, z).

Therefore, we have prove that

ψ↓↓− (x̄;h,w) = g↓↓(F (x̄);DF (x̄)h, z)

for the case w ∈ T 2
domψ(x̄, h).

For w 6∈ T 2
domψ(x̄, h), since domψ↓↓− (x̄;h·) ⊂ T 2

domψ(x̄, h) always hold, we have ψ↓↓− (x̄;h,w) =

+∞ and z 6∈ T 2
domg(F (x̄), DF (x̄)h) = domg↓↓− (F (x̄), DF (x̄)h), ·). This implies that

g↓↓(F (x̄);DF (x̄)h, z) = +∞ and w 6∈ domψ↓↓− (x̄;h, ·) duo to (3.92). This show that

ψ↓↓− (x̄;h,w) = g↓↓(F (x̄);DF (x̄)h, z) = +∞
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for the case w 6∈ T 2
domψ(x̄, h) and domψ↓↓− (x̄;h·) = T 2

domψ(x̄, h). Hence, we complete the
proofs of (i) and (ii). ut

It is worth mentioning that a chain rule for parabolic subderivatives for the composite
form (3.89) was achieved in [14, Exercise 13.63] and [2, Proposition 3.42] when g is merely
a proper l.s.c. function and the assumption that Ψ(x) = F (x) − domg is metric regular
at (x̄, 0).

Given v̄ ∈ ∂ψ(x̄), we define the set of Lagrangian multipliers associated with (x̄, v̄) by

Λ(x̄, v̄) := {λ ∈ Rm|DF (x̄)∗λ = v̄, λ ∈ ∂g(F (x̄)). (3.93)

It is easy to see that h ∈ Kψ(x̄, v̄) ⇔ DF (x̄)h ∈ Kg(F (x̄), λ) ∀λ ∈ Λ(x̄, v̄) whenever
either the Robinson’s condition (3.79) holds or the metric subreguarity (3.86) and g is
Lipschitz continuous around F (x̄) relative to its domain.

Proposition 3.6. Suppose that F : Rn → Rm is twice differentiable at x̄ and g : Rm →
R̄ is proper, l.s.c., convex and Lipschitz continuous around ȳ = F (x̄)(with g(ȳ) finite)
relative to its domain and suppose that the metric subregularity constraint qualification
(3.86) hold. If for every v̄ ∈ ∂ψ(x̄) and λ ∈ Λ(x̄, v̄), g is parabolically epi-differentiable
at ȳ in every direction d ∈ Kg(ȳ, λ), then for every h ∈ Rn we have the lower estimate

d2ψ(x̄, v̄)(h) ≥ sup
λ∈Λ(x̄,v̄)

{〈λ,D2F (x̄)(h, h)〉+ d2g(F (x̄), λ)(DF (x̄)h)}; (3.94)

while for every h ∈ Kf (x̄, v̄) we obtain the upper estimate

d2ψ(x̄, v̄)(h) ≤ inf
w∈Rn
{g↓↓− (F (x̄);DF (x̄)h,DF (x̄)w+D2F (x̄)(h, h))−〈v̄, w〉} <∞. (3.95)

Proof. For any λ ∈ Λ(x̄, v̄), we can write

∆2
tψ(x̄, v̄)(h) =

g(F (x̄+ th))− g(F (x̄))− t〈v̄, h〉
1
2
t2

=
g(F (x̄) + tF (x̄+th)−F (x̄)

t
)− g(F (x̄))− t〈λ,DF (x̄)h〉

1
2
t2

=
g(F (x̄) + tF (x̄+th)−F (x̄)

t
)− g(F (x̄))− t〈λ, F (x̄+th)−F (x̄)

t
〉

1
2
t2

+
〈λ, F (x̄+ th)− F (x̄)− tDF (x̄)h〉

1
2
t2

Because F (x̄+th
′
)−F (x̄)
t

→ DF (x̄)h as t→ 0 and h
′ → h, while at the same time

〈λ, F (x̄+ th
′
)− F (x̄)− tDF (x̄)h

′〉
1
2
t2

→ 〈λ,D2F (x̄)(h, h)〉,

we have
d2ψ(x̄, v̄)(h) ≥ d2g(F (x̄), λ)(DF (x̄)h) + 〈λ,D2F (x̄)(h, h)〉.

This complete the proof of (3.94). The upper estimation (3.95) follows from Proposition
3.5 and Proposition 2.4 ut
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The above result carries important information by which we can achieve a chain rule
for the second subderivative. To do so, we should look for conditions under which the
lower and upper estimates (3.94) and (3.95), respectively, coincide. This motivates us to
consider the unconstrained optimization problem

min
w∈Rn
{g↓↓− (F (x̄), DF (x̄)h,DF (x̄)w +D2F (x̄)(h, h))− 〈v̄, w〉} (3.96)

Proposition 3.7. Suppose that F : Rn → Rm is twice differentiable at x̄ and g : Rm →
R̄ is proper, l.s.c., convex and Lipschitz continuous around ȳ = F (x̄)(with g(ȳ) finite)
relative to its domain and suppose that the metric subregularity constraint qualification
(3.86) hold. If for every v̄ ∈ ∂ψ(x̄) and λ ∈ Λ(x̄, v̄), g is parabolically epi-differentiable at
ȳ in every direction d ∈ Kg(ȳ, λ), and parabolically regular at F (x̄) for λ , then for every
h ∈ Kψ(x̄, v̄), the dual problem of (3.96) is given by

d2ψ(x̄, v̄)(h) = max
λ∈Λ(x̄,v̄)

〈λ,D2F (x̄)(h, h)〉+ d2g(F (x̄), λ)(DF (x̄)h), (3.97)

Proof. (i) By the classical Fenchel-Rockafellar duality theorem, we know that the
dual problem of (3.96) is given by

max
λ∈Λ(x̄,v̄)

〈λ,D2F (x̄)(h, h)〉+ d2g(F (x̄), λ)(DF (x̄)h). (3.98)

ut

Theorem 3.6. Suppose that F : Rn → Rm is twice differentiable at x̄ and g : Rm → R̄ is
proper, l.s.c., convex and Lipschitz continuous around ȳ = F (x̄)(with g(ȳ) finite) relative
to its domain and suppose that the metric subregularity constraint qualification (3.86) hold.
Suppose that for every v̄ ∈ ∂ψ(x̄) and λ ∈ Λ(x̄, v̄), g is parabolically epi-differentiable at
ȳ in the direction d ∈ Kg(F (x̄), λ), and parabolically regulat at F (x̄) for λ. Then ψ is
parabolically regular at x̄ for v̄. Furthermore, for every h ∈ Rn, the second subderivative
of ψ at x̄ for v̄ is calculated by

d2ψ(x̄, v̄)(h) = max
λ∈Λ(x̄,v̄)

{〈λ,D2F (x̄)(h, h)〉+ d2g(F (x̄), λ)(DF (x̄)h)} (3.99)

Proof. If h ∈ Kψ(x̄, v̄), It follows from Proposition 3.6 and Proposition 3.7 and
Theorem 3.5 that (3.100) is satisfied and

d2ψ(x̄, v̄)(h) = inf
w∈Rn

ψ↓↓− (x̄;h,w)− 〈v̄, w〉}. (3.100)

By Theorem 3.5, ψ is parabolic epi-differntiable at x̄ for every h ∈ Kψ(x̄, v̄) and domψ↓↓− (x̄, h, ·) 6=
∅ for every h ∈ Kψ(x̄, v̄). So, since d2ψ(x̄, v̄) is proper, by Proposition 2.5, domd2ψ(x̄, v̄) =
Kψ(x̄, v̄). Thus, if h 6∈ Kψ(x̄, v̄), then d2ψ(x̄, v̄)(h) =∞.

On the other hand, since h 6∈ Kψ(x̄, v̄) ⇔ DF (x̄)h 6∈ Kg(F (x̄), λ) ∀λ ∈ Λ(x̄, v̄), we
have d2g(F (x̄), λ)(DF (x̄)h) =∞. Therefore, both side in (3.100) are ∞. ut

When g is a convex piecewise linear-quadratic (or more case where g is fully amenable),
the parabolic regularity of the composite ψ = g ◦F and chain rule 3.100) were established
in [14, Theorem 13.67] under the stronger condition the metric regularity.

Corollary 3.1. (chain rule for twice epi-differentiability). Suppose all the assumptions
of Theorem 3.6. Then ψ is twice epi-differentiable at x̄ for v̄.
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4 The second order optimality conditions for com-

posite optimization problem

We consider the following composite optimization problem:

(P ) min
x∈Rn
{f(x) + g(F (x))},

where f : Rn → R is twice differentiable on Rn, F : Rn → Rm is a twice differentiable
mapping, and g : Rm → R̄ is a proper lower semicontinuous extended real-valued function.
Clearly, if g(·) := δK(·) is the indicator function of a nonempty set K ⊂ Y , then the
problem (P ) reduces to (CP ).

(CP ) min
x∈Rn

f(x) subject to F (x) ∈ K.

The Lagrangian function for (P) is defined by

L(x, λ) = f(x) + 〈λ, F (x)〉,

and the Lagrangian multiplier set is defined by

Λ(x̄) = {λ ∈ Rm|∇f(x̄) +DF (x̄)∗(λ) = 0, λ ∈ ∂g(F (x̄))}.

If x̄ is a locally optimal solution of (P), then 0 ∈ ∂(f+g◦F )(x̄) = ∇f(x̄)+∂(g◦F )(x̄).
Hence −∇f(x̄) ∈ ∂(g ◦F )(x̄). If the assumption Theorem 3.4 is satisfied, then −∇f(x̄) ∈
DF (x̄)∗∂g(F (x̄)). It is clear in this case that

Λ(x̄) = Λ(x̄,−∇f(x̄)). (4.101)

4.1 The second order optimality conditions for optimization
problem

Proposition 4.1. Let φ : Rn → R̄ be an extended lower semicontinuous real-valued func-
tion. (i) If x̄ is a locally minimizer of φ on Rn, then d2φ(x̄, 0)(h) ≥ 0 for all h ∈ Rn.

(ii) If the second order growth condition holds at x̄ iff

d2φ(x̄, 0)(h) > 0, ∀h ∈ Rn \ {0}. (4.102)

Proposition 4.2. Assume that the first order necessary condition dφ(x̄) ≥ 0. Then

(i) If x̄ is a local minimizer of φ, then

inf
w∈Rn

φ↓↓− (x̄;h,w) ≥ 0, ∀h ∈ Kφ(x̄, 0). (4.103)

(ii) If, in addition, f is parabolically regular at x̄, for v̄ = 0, then the second order growth
condition holds at x̄ iff

inf
w∈Rn

φ↓↓− (x̄;h,w) > 0, ∀h ∈∈ Kφ(x̄, 0). (4.104)

26



Example 4.1. Let S be a convex closed subset of X and consider the corresponding
indicator function g(·) := δS(·), a point x ∈ S and a direction h ∈ TS(x). Recall that
dg(x, h) = δTS(x)(h), that g↓↓− (x;h, ·) = δT 2

S(x,h), and that the indicator function g is (outer)
second order regular at x iff the set S is (outer) second order regular at x. Let v ∈ NS(x)
be such that 〈v, h〉 = 0. By proposition 3.2 we have that if S is outer second order regular
at x in the direction h, then g is parabolically regular at x in the direction h, for v, and

d2g(x, v)(h) = inf
w∈T 2

S(x,h)
(−〈v, w〉) = −σ(v, T 2

S(x, h)).

It is interesting to note that if v = 0, then d2g(x, 0)(h) = 0 whether S is second order
regular or not. On the other hand, infw g

↓↓
− (x, h, w) is equal to 0 iff T 2

S(x, h) is nonempty,
and is +∞ otherwise. Therefore, g is parabolically regular at x in the direction h , for
v = 0, iff T 2

S(x, h) is nonempty.

Results presented in this section can be used to derive second order optimality con-
ditions for constrained problems. Let S be a closed set of Rn, let f : X → R be twice
continuously differentiable function, and consider the problem

min
x∈S

f(x). (4.105)

Clearly, the above problem is equivalent to minimization of the extended real valued
function φ(·) = f(·) + δS(·) over Rn.

Let x̄ ∈ S. We have then that for any h ∈ X,

dφ(x̄)(h) = ∇f(x̄)h+ δTS(x̄)(h).

It follows that if x̄ is a local minimizer of f over S, then ∇f(x̄)h ≥ 0 for all h ∈ TS(x̄).
Moreover, we have that

φ↓↓− (x̄;h,w) = ∇f(x̄)w +∇2f(x̄)(h, h) + δT 2
S(x̄,h)(w),

for all h ∈ TS(x̄) and w ∈ Rn, and hence

inf
w∈X

φ↓↓− (x̄;h,w) = ∇2f(x̄)(h, h)− σ(−∇f(x̄), T 2
S(x̄, h)).

It follows then by Proposition 4.2 that if x̄ is a local minimizer of f over S, then

∇2f(x̄)(h, h)− σ(−∇f(x̄), T 2
S(x̄, h)) ≥ 0, ∀h s. t. ∇f(x̄)h ∈ TS(x̄). (4.106)

Condition (4.106) hold irrespective of S being convex or not. Also, we have that the
function f̄ is out second order regular at x̄ iff the set S is outer second order regular at
x̄. Therefore it follows from Proposition 4.2 that if the space X is finite dimensional, the
set S is outer second order regular at x̄ and x̄ satisfies the first order necessary optimality
conditions, then the second order growth condition holds at x̄ iff

∇2f(x̄)(h, h)− σ(−∇f(x̄), T 2
S(x̄, h)) > 0, ∀ h 6= 0 s. t. ∇f(x̄)h ∈ TS(x̄). (4.107)

Suppose now that the set S is given in the form S := F−1(K), where K ⊂ Rm is a
closed convex and F : Rn → Rm is a twice continuously differentiable mapping. Suppose
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further that Robinson’s constraint qualification holds at x̄. Then by the the chain rule
(1.8) we have

T 2
S(x̄, h) = {w : DF (x̄)(w) +D2F (x̄)(h, h) ∈ T 2

K(F (x̄), DF (x̄)h)}. (4.108)

Combing (4.108), the second necessarily condition (4.106) becomes for every h ∈ C(x̄) :=
{h ∈ Rn|DF (x̄)h ∈ TK(F (x̄),∇f(x̄)h = 0},

∇2f(x̄)(h, h) +∇f(x̄)w ≥ 0, (4.109)

subject to DF (x̄)(w) +D2F (x̄)(h, h) ∈ T 2
K(F (x̄), DF (x̄)h). (4.110)

We now consider the second order optimality condition for (P). Let φ(x) = f(x) +
g(F (x)).

Theorem 4.1. Suppose that g : Rm → R̄ is proper, l.s.c., convex and Lipschitz continuous
around ȳ = F (x̄)(with g(ȳ) finite) relative to its domain and suppose that the metric
subregularity constraint qualification (3.86) hold. Let v̄ = −∇f(x̄) ∈ ∂(g ◦ F )(x̄) Suppose
that for every λ ∈ Λ(x̄, v̄) = Λ(x̄), g is parabolically epi-differentiable at ȳ in every
direction d ∈ Kg(ȳ, λ), and parabolically regular at F (x̄) for λ. Then the following second-
order optimality conditions for the composite problem (P) are satisfied:

(i) if x̄ is a local minimum of (P), then the second-order necessary condition

max
λ∈Λ(x̄)

{〈∇2
xxL(x̄, λ)h, h〉+ d2g(F (x̄), λ)(DF (x̄)h)} ≥ 0 (4.111)

holds for all h ∈ C(x̄) = {h ∈ Rn|〈−∇f(x̄), h〉 = dg(F (x̄))(DF (x̄)h)};
(ii) the second-order condition

max
λ∈Λ(x̄)

{〈∇2
xxL(x̄, λ)h, h〉+ d2g(F (x̄), λ)(DF (x̄)h)} > 0 for all h ∈ C(x̄) \ {0} (4.112)

is equivalent to the second order growth condition for φ(x).

4.2 The second order optimality condition for augmented La-
grangian function

We consider the augmented Lagrangian function for the following composite optimization
problem:

(P ) min
x∈Rn
{f(x) + g(F (x))}.

The Moreau envelope eνφ(·) of a convex function φ at u ∈ Rm for parameter ν > 0,
defined as

eνφ(u) = inf
w∈Rm

{φ(w) +
1

2ν
‖u− w‖2}, (4.113)

is real-valued, convex and continuous, and the infimum in (4.113) is uniquely attained for
every u ∈ Rm. We denote its unique minimizer by Pνφ(u), i.e.,

Pνφ(u) := argminw∈Rm{φ(w) +
1

2ν
‖u− w‖2} = (I + ν∂φ)−1(u), (4.114)
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which is called the proximal mapping of φ. Moreover, it was well known that that eνφ(u)
is differentiable, and its gradient

∇eνφ(u) = ν−1(u− Pνφ(u)) (4.115)

is ν−1-Lipschitz continuous. Following [14], the augmented Lagrangian for the problem
(P ) can be expressed by

L(x, λ, τ) = f(x) + inf
y∈Rm
{g(F (x) + y) +

τ

2
‖y‖2 − 〈λ, y〉}

= f(x) + inf
y∈Rm
{θ(F (x) + y) +

τ

2
‖τ−1λ− y‖2} − 1

2τ
‖λ‖2

= f(x) + eτ−1θ(τ−1λ+ F (x))− 1

2τ
‖λ‖2. (4.116)

Proposition 4.3. The set Λ(x̄) of the Lagrange multipliers of the problem (P ) at x̄ can
be expressed as

Λ(x̄) := {λ ∈ Rm : ∇xL(x̄, λ, τ) = 0 and ∇λL(x̄, λ, τ) = 0},

for any τ > 0.

In the following we assume that the function g : Rm → R̄ is proper lower semicontin-
uous convex and twice epi-differentiable at F (x̄).

Lemma 4.1. Suppose that the set Λ(x̄) of the Lagrange multipliers is nonempty and
λ ∈ Λ(x̄). Then, for any ξ ∈ Rn, one has

d2eτ−1g(τ−1λ+ F (·))(x̄, DF (x̄)∗λ)(h) = 2dτ−1(DF (x̄)h) + 〈λ,D2F (x̄)(h, h)〉, (4.117)

where

dτ−1(DF (x̄)h) := inf
y∈Rm
{1

2
d2g(F (x̄), λ)(y) +

τ

2
‖DF (x̄)h− y‖2} (4.118)

denotes the Moreau envelope of 1
2
d2g(F (x̄), λ)(·) at DF (x̄)h.

Denote by `τ (x) = L(x, λ, τ). From the proof of Proposition 4.3, we have ∇`τ (x̄) =
∇xL(x̄, λ) = 0. By Proposition 2.10 in [11], the second-order epi-derivative of `τ (x) at x̄
relative to w = D`τ (x̄) = 0 can be expressed as

d2(`τ )(x̄, 0)(h) = ∇2
xxL(x̄, λ)(h, h) + 2dτ−1(DF (x̄)h). (4.119)

The necessary and sufficient conditions are stated as follows:

Theorem 4.2. Let λ ∈ Λ(x̄). Then, 0 ∈ ∂̂`τ (x̄) for any τ > 0, and the following
assertions hold:

(a) (Necessary condition). If `τ (·) has a local minimum at x̄, then

∇2
xxL(x̄, λ)(h, h) + 2dτ−1(DF (x̄)h) ≥ 0, for all h ∈ Rn. (4.120)
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(b) (Sufficient condition). If the condition

∇2
xxL(x̄, λ)(h, h) + 2dτ−1(DF (x̄)h) > 0, for all h ∈ Rn \ {0}, (4.121)

holds, then `τ (·) has a local minimum at x̄ in the sense of quadratic growth condition.

Proposition 4.4. Let λ ∈ Λ(x̄) be a Lagrange multiplier of the problem (P ) at x̄. Then
(4.121) is equivalent to the following condition

∇2
xxL(x̄, λ)(h, h) + d2g(F (x̄), λ)(DF (x̄)h) > 0, ∀ h ∈ C(x̄) \ {0} (4.122)

for τ sufficiently large.

Proof. For any h ∈ C(x̄), by taking y = DF (x̄)h, we have that

dτ−1(DF (x̄)h) ≤ 1

2
d2g(F (x̄), λ)(DF (x̄)h).

Hence, the condition (4.121) implies that

∇2
xxL(x̄, λ)(h, h) + d2g(F (x̄), λ)(DF (x̄)h) > 0, ∀ h ∈ C(x̄) \ {0}. (4.123)

Suppose that (4.121) doesn’t hold. Then, there exist some sequence τk → +∞ as
k →∞ and hk ∈ Rn with ‖hk‖ = 1 such that

∇2
xxL(x̄, λ)(hk, hk) + 2dτ−1

k
(DF (x̄)hk) ≤ 0.

Observe that dτ−1
k

(·) defined in (4.118) is the Moreau envelope of 1
2
d2g(F (x̄), λ)(·). Since

1
2
d2g(F (x̄), λ)(·) is proper lower semicontinuous and convex, the infimum of dτ−1

k
(DF (x̄)hk)

can be attained uniquely at z̄k := Proxτ−1
k

(1
2
d2g(F (x̄), λ)(DF (x̄)hk) ∈ dom1

2
d2g(F (x̄), λ)(·).

It follows that

∇2
xxL(x̄, λ)(hk, hk) + τk‖DF (x̄)hk − z̄k‖2 +

1

2
d2g(F (x̄), λ)(z̄k) ≤ 0. (4.124)

Since {∇2
xxL(x̄, λ)(hk, hk)} is bounded, the term d2g(F (x̄), λ)(z̄k) is nonnegative and τk →

+∞ as k → +∞, it follows from (4.124) that

lim
k→+∞

‖DF (x̄)hk − z̄k‖ = 0. (4.125)

Because ‖hk‖ = 1, by passing to a subsequence if necessary, we assume that hk →
h. Hence, we have ‖h‖ = 1 and by (4.125), z̄k → DF (x̄)h as k → +∞. The lower
semicontinuity of 1

2
d2g(F (x̄), λ)(·) implies that DF (x̄)h ∈ domd2g(F (x̄), λ)(·), and so

that
dg(F (x̄)(DF (x̄)h) = 〈λ,DF (x̄)h〉 = 〈−∇f(x̄), h〉.

This implies that h ∈ C(x̄). Again, by the lower semicontinuity of 1
2
d2g(F (x̄), λ)(·), we

have from (4.124) that

∇2
xxL(x̄, λ)(h, h) + d2g(F (x̄), λ)(DF (x̄)h) ≤ 0,

which contradicts (4.123). ut
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