Metric subregularity

Xi Yin Zheng

Department of Mathematics, Yunnan University

运筹学基础与发展论坛 DOOR #1: 变分分析-基础理论与前沿进展 ORS 中国运筹学会 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

$\hat{\diamond}$ 1. Metric regularity

 $\hat{\otimes}$ 2. Metric subregularity

\diamondsuit 3. Convex case

Metric reqularity

X, Y—Banach spaces, $F: X \rightrightarrows Y$ —a multifunction, $(\bar{x}, \bar{y}) \in \text{gph}(F) := \{(x, y) \in X \times Y : y \in F(x)\}\$

Metric regularity of F at (\bar{x}, \bar{y}) : there exist $\kappa, \delta \in (0, +\infty)$ such that

 $d(x, F^{-1}(y)) \leq \kappa d(y, F(x)) \quad \forall (x, y) \in B(\bar{x}, \delta) \times B(\bar{y}, \delta).$ (1.1)

Strong metric regularity of F at (\bar{x}, \bar{y}) : there exist $\kappa, \delta \in (0, +\infty)$ such that (1.1) holds and $F^{-1}(y) \cap B(\bar{x}, \delta)$ is a singleton for all $y \in B(\bar{y}, \delta)$.

1. Strong metric regularity of F at $(\bar{x}, \bar{y}) \Longleftrightarrow F^{-1}$ is a locally Lipschitz singlevalued function around (\bar{x}, \bar{y}) .

2. Metric regularity of F at $(\bar{x}, \bar{y}) \Longleftrightarrow F^{-1}$ is pseudo-Lipschitz around (\bar{x}, \bar{y}) . 3. Metric regularity of F at $(\bar{x}, \bar{y}) \Longleftrightarrow F$ is locally linear-open around (\bar{x}, \bar{y}) .

Theorem I (Banach). Let F be a continuous linear operator between Banach spaces X and Y . Then the following statements are equivalent. (*i*) $F(X) = Y$. (ii) F is an open mapping. (iii) F is metrically regular at any point in $gph(F)$.

Theorem II (Lyusternik-Graves). Let F be a smooth single-valued function between two Banach spaces such that the derivative $\nabla F(\bar{x})$ is surjective for some \bar{x} . Then F is metrically regular at $(\bar{x}, F(\bar{x}))$.

Theorem III (Robinson-Ursescu). Let F be a closed convex multifunction between two Banach spaces, and let $(\bar{x}, \bar{y}) \in \text{gph}(F)$ be such that \bar{y} is an interior point of $F(X)$. Then F is metrically subregular at (\bar{x}, \bar{y}) .

Coderivatives $\hat{D}^*F(x,y), \bar{D}^*F(x,y), D^*F(x,y): Y^* \rightrightarrows X^*$

$$
D^*F(x, y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in N(\text{gph}(F), (x, y))\}
$$

$$
\bar{D}^*F(x, y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in \bar{N}(\text{gph}(F), (x, y))\}
$$

$$
\hat{D}^*F(x, y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in \hat{N}(\text{gph}(F), (x, y))\}
$$

for all $y^* \in Y^*$.

Theorem IV (Mordukhovich, TAMS 1996). Let X, Y be finite dimensional spaces and let $F: X \rightrightarrows Y$ be a closed multifunction. Then F is metrically regular at (\bar{x}, \bar{y}) if and only if $\bar{D}^*F(\bar{x}, \bar{y})^{-1}(0) = \{0\}.$

Theorem V(Dontchev et al, TAMS 2004). Let F be metrically regular at (\bar{x}, \bar{y}) . Then, there exists $\delta > 0$ such that for any single-valued Lipschitz function $g: X \to Y$ with $\text{lip}(g, \bar{x}) < \delta$, $F + g$ is metrically regular at $(\bar{x}, \bar{y} + g(\bar{x}))$.

2 **Metric subregularity**

Metric subregularity of F at (\bar{x}, \bar{y}) : there exist $\tau, \delta \in (0, +\infty)$ such that

 $d(x, F^{-1}(\bar{y})) \leq \tau d(\bar{y}, F(x)) \quad \forall x \in B(\bar{x}, \delta),$ (2.2)

where $F^{-1}(\bar{y})$ can be regarded as the solution set of the following generalized equation

 $\bar{y} \in F(x)$.

In the special case when $F(x) = [\varphi(x), +\infty)$ and $\bar{y} = 0$ (resp. $\bar{y} = \inf_{x \in X} \varphi(x)$), the metric regularity of F at (\bar{x}, \bar{y}) reduces to that φ has an error bound (weak sharp minimum) at \bar{x} .

Theorem VI (Hoffman, 1952). Let $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ be a polyhedral multifunction (i.e., $gph(F)$ is a polyhedron in $\mathbb{R}^m \times \mathbb{R}^n$). Then there exists $\tau > 0$ such *that*

 $d(x, F^{-1}(y)) \leq \tau d(y, F(x)) \quad \forall (x, y) \in \mathbb{R}^m \times F(\mathbb{R}^m).$

Theorem VII (Robinson, 1979). Let $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ be a piecewise polyhedral multifunction (i.e., $gph(F)$ is the union of finitely many polyhedra in $\mathbb{R}^m \times \mathbb{R}^n$). Then F is metrically subregular at each $(\bar{x}, \bar{y}) \in \text{gph}(F)$.

Theorem VIII (Zheng-NG, SIOPT, 2014). Let F be a piecewise polyhedral multifunction between two normed spaces X and Y, and let $\bar{y} \in F(X)$. The following statements hold:

(1) F is always boundedly metrically subregular at \bar{y} , that is, for any $r > 0$ there exists $\tau > 0$ such that

 $d(x, F^{-1}(\bar{y})) \leq \tau d(\bar{y}, F(x)) \quad \forall x \in B(0, r).$

(2) F is globally metrically subregular at \bar{y} if and only if $\lim_{d(x,F^{-1}(\bar{y}))\to\infty} d(\bar{y},F(x))=\infty.$

Theorem IX (Ioffe, TAMS, 1984). Let f be a locally Lipschitz function X and let $\bar{x} \in S(f) = f^{-1}(-\mathbb{R}_+)$. Suppose that there exist $\eta, \delta \in (0, +\infty)$ such that

 $\eta \leq d(0, \partial f(x)) \quad \forall x \in B(\bar{x}, \delta) \setminus S(f).$

Then the multifunction $F(x) = [f(x), +\infty)$ is metrically subregular at $(\bar{x}, 0)$.

$$
J(y) := \partial \|\cdot\|(y) = \{y^* \in S_{Y^*} | \langle y^*, y \rangle = \|y\|\} \quad \forall y \in Y \setminus \{0\}.
$$

For any $\varepsilon > 0$, let

$$
J_{\varepsilon}(y) := \{ y^* \in S_{Y^*} | d(y^*, J(y)) < \varepsilon \} \quad \forall y \in Y \setminus \{0\}.
$$

For a subset A of Y and $\bar{y} \in Y$,

$$
P_A(\bar{y}) := \{ y \in A | \|\bar{y} - y\| = d(\bar{y}, A)) \}
$$

and

$$
P_A^{\varepsilon}(\bar{y}) := \{ y \in A | \|y - \bar{y}\| < d(\bar{y}, A) + \varepsilon \}.
$$

Theorem 1 Let F be a closed multifunction between Banach spaces X and Y and let $(\bar{x}, \bar{y}) \in \text{gph}(F)$. The following statements hold: (i) Let $\varepsilon, \eta, \delta \in (0, +\infty)$ be such that

 $d(0, D_c^*F(x, y)(J_{\varepsilon}(y - \bar{y}))) \geq \eta$

for all $x \in B(a, \delta) \setminus F^{-1}(\bar{y})$ and all $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\bar{y}, \delta)$. Then

$$
d(x, F^{-1}(\bar{y})) \le \frac{1}{\eta} d(\bar{y}, F(x)) \quad \forall x \in B\left(a, \frac{\delta}{2+\eta}\right).
$$

(ii) If F is convex, then F is metrically subregular at (\bar{x}, \bar{y}) if and only if there exist $\varepsilon \in (0, 1)$ and $\eta, \delta \in (0, +\infty)$ such that

 $d(0, D_c^*F(x, y)(J_c(y - \bar{y}))) > \eta$

for all $x \in B(a, \delta) \setminus F^{-1}(\overline{y})$ and all $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\overline{y}, \delta)$.

In the case when $F(x) = [f(x), +\infty), D_c^*F(x, y)(J_c(y - \bar{y})) = \partial_c f(x)$ (resp. $= \emptyset$) for $y = f(x)$ (resp. $y > f(x)$).

For convenience, we adopt $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$ defined by

 $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta) := \{x \in B(\bar{x}, \delta) \setminus F^{-1}(\bar{y}) : d(x, F^{-1}(\bar{y}))) > \tau d(\bar{y}, F(x))\}.$

Clearly, F is metrically subregular at (\bar{x}, \bar{y}) with constants τ and δ if and only if $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$ is empty. Therefore, if $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta) \neq \emptyset$ then F is not metrically subregular at (\bar{x}, \bar{y}) with the constants τ and δ , but F is possibly metrically subregular at (\bar{x}, \bar{y}) with larger constant τ' and smaller constant δ' . This motivates us to establish sufficient conditions for the metric subregularity of F at (\bar{x}, \bar{y}) only concerning with x in $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$.

Theorem 2 Let F be a closed multifunction between Banach spaces X and Y and let $(\bar{x}, \bar{y}) \in \text{gph}(F)$, and let $\varepsilon, \eta, \delta \in (0, +\infty)$ be such that

 $d(0, D_c^*F(x, y)(J_c(y - \bar{y}))) \ge \eta$

for all $x \in \mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$ and all $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\bar{y}, \delta)$. Then F is metrically subregular at (\bar{x}, \bar{y}) .

Adopting an admissible function φ (namely an increasing $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\varphi(0) = 0$ and $[\varphi(t) \to 0 \Rightarrow t \to 0]$, consider the following more general metric subregularity: F is said to be metrically φ -subregular at $(\bar{x}, \bar{y}) \in \text{gph}(F)$ if there exist $\tau, \delta \in (0, +\infty)$ such that

 $\varphi(d(x, F^{-1}(\bar{y}))) \leq \tau d(\bar{y}, F(x)) \quad \forall x \in B(\bar{x}, \delta).$

In the special case when $\varphi(t) = t^p$, the metric φ -subregularity reduces to the so-called Hölder metric subregularity.

For $\varepsilon, \delta, \beta \in (0, +\infty)$, let

$$
\mathcal{B}(F,\bar{x},\bar{y},\varepsilon,\delta) := \{(x,y) : x \in B(\bar{x},\delta) \setminus F^{-1}(\bar{y}), y \in P_{F(x)}^{\varepsilon}(\bar{y}) \cap B(\bar{y},\delta)\}
$$

and

$$
K_{\beta}(\bar{x}, \bar{y}) := \{(x, y) \in X \times Y : ||y - \bar{y}|| \le \beta ||x - \bar{x}||\}.
$$

Theorem 3 Let φ be a convex admissible function and F be a closed multifunction between two Banach spaces X and Y. Let $\alpha \in (0,1)$, $\varepsilon, \delta \in (0,+\infty)$, $\beta \in (0, +\infty]$ and $(\bar{x}, \bar{y}) \in \text{gph}(F)$ be such that

$$
\frac{1}{\alpha}\varphi'_+\left(\frac{d(x,F^{-1}(\bar{y}))}{1-\alpha}\right)\leq d(0,D^*F(x,y)(J_{\varepsilon}(y-\bar{y})))
$$

for all $(x, y) \in \mathcal{B}(F, \bar{x}, \bar{y}, \varepsilon, \delta) \cap K_{\beta}(\bar{x}, \bar{y})$. Let

$$
\delta':=\min\left\{\frac{\delta}{1+\alpha},\varphi^{-1}(\delta)\right\}\ \ \text{and}\ \ \kappa:=\max\left\{1,\frac{\varphi'_+(\delta')}{\alpha\beta}\right\}.
$$

Then

 $\varphi(d(x, F^{-1}(\bar{y}))) \leq \kappa d(\bar{y}, F(x)) \quad \forall x \in B_X(\bar{x}, \delta').$

Convex case

Let $f : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function and C is a closed convex subset of \mathbb{R}^m . In the case that

 $F(x) := \left[\max\{f(x), d(x, C)\}, +\infty\right] \quad \forall x \in \mathbb{R}^m,$

Lewis and Pang (1997) proved that if $f(\bar{x}) = 0$ and $\partial f(\bar{x}) \neq \emptyset$ then

metric subregularity of F at $(\bar{x}, 0) \Longrightarrow N(F^{-1}(0), \bar{x}) = \overline{N(C, \bar{x}) + \mathbb{R}_+ \partial f(\bar{x})}$

Lewis and Pang's open problem: find a useful converse of the abobe implication (characterize the metric regularity via the normal cone identity).

Let φ be a proper lower semicontinuous extended real convex function on a Banach space X and consider the following convex inequality

$$
\varphi(x) \leq 0.
$$

Let S denote the solution set of (CIE), that is, $S := \{x \in X : \varphi(x) \leq 0\}$. In the special case when φ is a continuous convex funciton, recall that (CIE) satisfies basic constraint qualification (BCQ) at $a \in bd(S)$ if

$$
N(S, a) = \mathbb{R}_+ \partial \varphi(a). \tag{3.3}
$$

To solve Lewis and Pang's open problem, using the singular subdifferential $\partial^{\infty}\varphi$, we introduce the following notions:

 $N(S, a) = \partial^{\infty} \varphi(a) + \mathbb{R}_{+} \partial \varphi(a),$ (BCQ)

 $(SBCQ)$ $N(S,a) \cap B_{X^*} \subset \partial^{\infty} \varphi(a) + [0, \tau] \partial \varphi(a).$

Theorem 4 Let φ be a proper lower semicontinuous convex function on a Banach space X and $F(x) := [\varphi(x), +\infty)$ for all $x \in X$. Then F is metrically subregular at $(\bar{x},0)$ with $\varphi(\bar{x})=0$ if and only if there exist $\tau, \delta \in (0, +\infty)$ such that the convex function φ has strong BCQ at each $x \in \text{bd}(F^{-1}(\bar{y})) \cap B(\bar{x}, \delta)$ with the same constant τ .

Theorem 5 Let F be a closed convex multifunction between Banach spaces X and Y and $(\bar{x}, \bar{y}) \in \text{gph}(F)$. Then F is metrically subregular at (\bar{x}, \bar{y}) if and only if there exists $\delta > 0$ such that F has strong BCQ at each $x \in \text{bd}(F^{-1}(\bar{y})) \cap$ $B(\bar{x},\delta)$ with the same constant, that is, there exists $\tau \in (0, +\infty)$ such that

 $N(F^{-1}(\bar{y}),x) \cap B_{X^*} \subset \tau D^*F(x,\bar{y})(B_{Y^*}) \quad \forall x \in \text{bd}(F^{-1}(\bar{y})) \cap B(\bar{x},\delta).$

Theorem 6 Let F be a closed convex multifunction between Banach spaces X and Y. Then F is globally metrically subregular at $\overline{y} \in F(X)$ (i.e., there exists $\tau \in (0, +\infty)$ such that $d(x, F^{-1}(\bar{y})) \leq \tau d(\bar{y}, F(x))$ for all $x \in X$) if and only if there exist $\tau \in (0, +\infty)$ such that

 $N(F^{-1}(\bar{y}),x) \cap B_{X^*} \subset \tau D^*F(x,\bar{y})(B_{Y^*}) \quad \forall x \in C,$

where C is some recession core of $F^{-1}(\bar{y})$ in the sense $F^{-1}(\bar{y}) = C + F^{-1}(\bar{y})^{\infty}$. If, in addition, $F^{-1}(\bar{y})$ is a polyhedron, then F is globally metrically subregular at \bar{y} if and only if

 $N(F^{-1}(\bar{y}),x) = D^*F(x,\bar{y})(Y^*) \quad \forall x \in C.$

Theorem 7 Let F be a closed multifunction between Banach spaces X and Y and let $(\bar{x}, \bar{y}) \in \text{gph}(F)$. Then the following statements hold: (i) If F is metrically subregular at (\bar{x}, \bar{y}) , then there exist $\eta, \delta \in (0, +\infty)$ such that

 $\hat{N}(F^{-1}(\bar{y}),x) \cap B_{X^*} \subset \eta D^*F(x,\bar{y})(B_{Y^*}) \quad \forall x \in F^{-1}(\bar{y}) \cap B(\bar{x},\delta).$

(ii) If F is subsmooth at (\bar{x}, \bar{y}) , F is metrically subregular at (\bar{x}, \bar{y}) if and only *if there exist* $\eta, \delta \in (0, +\infty)$ *such that*

 $N(F^{-1}(\bar{y}),x) \cap B_{X^*} \subset \eta D^*F(x,\bar{y})(B_{Y^*}) \quad \forall x \in F^{-1}(\bar{y}) \cap B(\bar{x},\delta).$

References

20(2010), pp.2119-2136.

- [1] A. L. Dontchev, A. S. Lewis and R. T. Rockafellar, The radius of metric regularity, Transactions of the American Mathematical Society, 355 (2003), pp.493-517.
- [2] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2009.
- [3] A. D. Ioffe, Metric regularity and subdifferential calculus. Russ. Math. Surveys 55 (2000), pp.501-558.
- [4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer-Verlag, New York, 2006.
- [5] B. Zhang and X.Y. Zheng, Well-posedness and generalized metric subregularity with respect to an admissible function, Science China Mathematics, 62(2019), pp.809-822.
- [6] X. Y. Zheng and K. F. Ng,, Metric regularity and constraint qualifications for convex inequalities in Banach spaces, SIAM J. Optim., 14(2004).pp.757-772.
- [7] X. Y. Zheng and K. F. Ng, Metric Subregularity and Constraint qualifications for Convex Generalized equations in Banach spaces, SIAM J. Optim., 18(2007), pp.437-460.
- [8] X. Y. Zheng and K. F. Ng, Calmness for L-subsmooth multifunctions in Banach spaces, SIAM J. Optim., 19(2009), 1648-1673.
- [9] X. Y. Zheng and K. F. Ng, Metric subregularity and calmness for nonconvex generalized equations in Banach spaces, SIAM J. Optim.,

