Separation results for disjoint closed sets based on normal cones

Xi Yin Zheng

Department of Mathematics, Yunnan University

$\hat{\diamond}$ Preliminaries 1.

- \diamondsuit 2. Fuzzy separation theorems for closed sets
- \bigotimes $3.$ **Convex case**
- $\hat{\diamond}$ 4. Well solvability of convex optimization problems

Preliminaries

Recall that a proper lower semicontinuous function φ on a real Banach space X is Frechet differentiable at $\bar{x} \in \text{dom}(\varphi)$ if there exists $x^* \in X^*$ such that

 $\varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle = o(||x - \bar{x}||).$

Frechet subdifferential:

 $\hat{\partial}\varphi(\bar{x}) = \{x^* \in X^* : \varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle > o(\|x - \bar{x}\|)\}.$

 $x^* \in \hat{\partial}\varphi(\bar{x}) \Longleftrightarrow \forall \varepsilon > 0 \ \exists \ \delta > 0 \ \text{ s.t.}$

 $\langle x^*, x - \bar{x} \rangle \leq \varphi(x) - \varphi(\bar{x}) + \varepsilon ||x - \bar{x}|| \quad \forall x \in B(\bar{x}, \delta).$

$$
\varphi(\bar{x}) = \min_{x \in B(\bar{x}, \delta)} \varphi(x) \Longrightarrow 0 \in \hat{\partial}\varphi(\bar{x}).
$$

Viscosity subdifferential:

 $\partial^V \varphi(\bar{x}) = \{q'(\bar{x}): \varphi - q \text{ attains its local minimum at } \bar{x}\}.$

If X is a smooth space, then $\partial^V \varphi(\bar{x}) = \partial^V \varphi(\bar{x})$.

Proximal subdifferential: $x^* \in \partial^p \varphi(\bar{x}) \iff \exists \sigma, \delta \in (0, +\infty)$ s.t.

 $\langle x^*, x - \bar{x} \rangle \leq \varphi(x) - \varphi(\bar{x}) + \sigma ||x - \bar{x}||^2 \quad \forall x \in B(\bar{x}, \delta).$

Limit subdifferential: $\overline{\partial}\varphi(\overline{x}) := \text{Limsup}_{x\to \overline{x}} \overline{\partial}\varphi(x)$ $x^* \in \bar{\partial}\varphi(\bar{x}) \Longleftrightarrow \exists x_n \to \bar{x} \& \exists x_n^* \stackrel{w^*}{\to} x^* \text{ s.t. } x_n^* \in \hat{\partial}\varphi(x_n) \ (\forall n \in \mathbb{N}).$

Clarke subdifferential: $\partial \varphi(\bar{x}) := \{x^* \in X^* : \langle x^*, h \rangle \leq \varphi^{\circ}(\bar{x}, h) \ \forall h \in X\},\$

$$
\varphi^{\circ}(\bar{x},h):=\lim_{\varepsilon\to 0^+}\lim_{x\to f\bar{x},t\to 0^+}\inf_{v\in B(h,\varepsilon)}\frac{\varphi(x+tv)-\varphi(x)}{t}.
$$

Local Lipschitz property of $\varphi \Longrightarrow \varphi^{\circ}(\bar{x}, h) = \limsup_{t \to 0} \frac{\varphi(x+th) - \varphi(x)}{t}$. $x \rightarrow \bar{x} \rightarrow 0^+$

1. $\partial^p \varphi(\bar{x}) \subset \partial^V \varphi(\bar{x}) \subset \hat{\partial} \varphi(\bar{x}) \subset \bar{\partial} \varphi(\bar{x}) \subset \partial \varphi(\bar{x}).$ **2.** If φ is smooth around \bar{x} , then $\hat{\partial}\varphi(\bar{x}) = \partial\varphi(\bar{x}) = {\varphi'(\bar{x})}$

3. If φ is smooth around \bar{x} and $x \mapsto \varphi'(x)$ is locally Lipschiz at \bar{x} , then

 $\partial^p \varphi(\bar{x}) = \partial \varphi(\bar{x}) = {\varphi'(\bar{x})}.$

4. If φ is convex, then

$$
\partial^p \varphi(\bar{x}) = \partial \varphi(\bar{x}) = \{ x^* \in X^* : \langle x^*, x - \bar{x} \rangle \le \varphi(x) - \varphi(\bar{x}) \ \forall x \in X \}.
$$

5. If $\dim(X) < \infty$ and φ is locally Lipschitz at $\bar{x} \in \text{dom}(\varphi)$, then

 $\partial \varphi(\bar{x}) = \overline{\mathrm{co}} \left\{ \lim_{n \to \infty} \varphi'(x_n) : x_n \to x, \; \varphi \text{ is Frechet differentiable at each } x_n \right\}.$

Theorem I. Let X be a Banach space and $\varphi, \psi : X \to \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions. The following statements hold: (*i*) dom($\partial \varphi$) is dense in dom(φ). (ii) If ψ is locally Lipschitzat $\bar{x} \in \text{dom}(\varphi)$, then

 $\partial(\varphi + \psi)(\bar{x}) \subset \partial \varphi(\bar{x}) + \partial \psi(\bar{x}).$

If $\varphi(x) = -||x||$ for all $x \in \ell^1$, then $\text{dom}(\hat{\partial}\varphi) = \text{dom}(\bar{\partial}\varphi) = \emptyset$.

Theorem II. Let X be an Asplund space and let $\varphi, \psi : X \to \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions. The following statements hold: (i) dom($\hat{\partial}\varphi$) is dense in dom(φ).

(ii) If ψ is locally Lipschitz at $\bar{x} \in \text{dom}(\varphi)$, then for any $x^* \in \hat{\partial}(\varphi + \psi)(\bar{x})$ and any $\varepsilon > 0$ there exist $x_1, x_2 \in B(\bar{x}, \varepsilon)$ such that

 $x^* \in \hat{\partial}\varphi(x_1) + \hat{\partial}\psi(x_2) + \varepsilon B_{X^*}$ and $|\varphi(x_1) - \varphi(\bar{x})| < \varepsilon$

and so $\partial(\varphi + \psi)(\bar{x}) \subset \partial \varphi(\bar{x}) + \partial \psi(\bar{x})$. (iii) $\partial \varphi(\bar{x}) = \mathrm{cl}^{w^*} \left(\mathrm{co} \left(\bar{\partial} \varphi(\bar{x}) + \bar{\partial}^{\infty} \varphi(\bar{x}) \right) \right).$

A—a closed set in a Banach space $X, a \in A$.

Bouligand tangent cone:

 $T(A, a) = \{h \in X : \exists t_n \to 0^+ \& \exists h_n \to h \text{ s.t. } a + t_n h_n \in A \ \forall n \in \mathbb{N}\}.$

Clarke tangent cone:

$$
T_C(A, a) := \{ h \in X : \quad \forall a_n \stackrel{A}{\to} a \& \forall s_n \to 0^+ \exists h_n \to h \text{ s.t. } a_n + s_n h_n \in A \quad \forall n \in \mathbb{N} \}.
$$

 $T_C(A, a) \subset T(A, a)$

Clarke normal cone:

 $N_C(A, a) := T_C(A, a)^\circ = \{x^* \in X^* : \langle x^*, h \rangle \leq 0 \ \forall h \in T_C(A, a)\}.$

Frechet normal cone:

$$
\hat{N}(A, a) := \left\{ x^* \in X^* : \limsup_{x \to a} \frac{\langle x^*, x - a \rangle}{\|x - a\|} \le 0 \right\}
$$

If X is an Asplund space, $\{a \in A : \hat{N}(A,a) \neq \{0\}\}\$ is dense in bd(A).

Proximal normal cone:

$$
\hat{N}^{p}(A, a) := \left\{ x^* \in X^* : \limsup_{x \to a} \frac{\langle x^*, x - a \rangle}{\|x - a\|^2} < +\infty \right\}
$$

If X is a Hilbert space, $x^* \in N^P(A, a) \Leftrightarrow a \in P_A(a + tx^*)$ for some $t > 0$, and $\{a \in A : N^p(A, a) \neq \{0\}\}\$ is dense in bd(A).

Proximal point: a point a is called a proximal point of A if $a \in P_A(x)$ for some $x \in X \setminus A.$

In 2010, Borwein [1] asked the following "most striking" open question: Is it possible that in every reflexive Banach space, the proximal points on $\text{bd}(\Omega)$ are dense in $\text{bd}(\Omega)$?

Limit normal cone: $\overline{N}(A, a) :=$ Limsup ${}_{x \stackrel{A}{\rightarrow} a} \hat{N}(A, x)$

$$
x^* \in \overline{N}(A, a) \Longleftrightarrow \exists x_n \stackrel{A}{\to} a \& \exists x_n^* \stackrel{w^*}{\to} x^* \text{ s.t. } x_n^* \in \hat{N}(A, x_n) \ (\forall n \in \mathbb{N}).
$$

$$
\hat{N}(A, a) \subset \overline{N}(A, a) \subset N_C(A, a).
$$

If X is an Asplund space, then $N_C(A, a) = cl^{w^*} (\text{co } (\bar{N}(A, a)))$.

$$
A \cap B(a, r) = B \cap B(a, r) \Longrightarrow \hat{N}(A, a) = \hat{N}(B, a) \& N_C(A, a) = N_C(B, a)
$$

$$
\hat{N}(A, a) = \hat{\partial}\delta_A(a), \ \bar{N}(A, a) = \bar{\partial}\delta_A(a), \ N_C(A, a) = \partial\delta_A(a).
$$

If A is convex, then

$$
T(A, a) = T_C(A, a) = \text{cl}(\mathbb{R}_+(A - a))
$$

and

$$
\hat{N}(A, a) = N_C(A, a) = \{x^* \in X^* : \langle x^*, a \rangle = \sup_{x \in A} \langle x^*, x \rangle\}.
$$

 $\varphi: X \to \mathbb{R} \cup \{+\infty\}$ —a proper lower semicontinuous function

 $\hat{\partial}\varphi(x) = \{x^* \in X^* : (x^*, -1) \in \hat{N}(\text{epi}(\varphi), (x, \varphi(x)))\}$ $\overline{\partial}\varphi(x) = \{x^* \in X^* : (x^*, -1) \in \overline{N}(\text{epi}(\varphi), (x, \varphi(x)))\}$ $\partial \varphi(x) = \{x^* \in X^* : (x^*, -1) \in N_C(\text{epi}(\varphi), (x, \varphi(x)))\},\$

where $epi(\varphi) = \{(x, t) \in X \times \mathbb{R} : \varphi(x) \leq t\}.$

 $\mathbf 2$ **Fuzzy separation theorems for disjoint** closed sets

Extremal point: A common point \bar{x} of closed sets A_1, \dots, A_m in a normed space is called an extremal point of these closed sets if there exist a neighborhood V of \bar{x} and m sequences $x_{1k} \rightarrow 0, \cdots, x_{mk} \rightarrow 0$ such that

$$
\bigcap_{i=1}^{m} (A_i - x_{ik}) \cap V = \emptyset \quad \forall k \in \mathbb{N}.
$$

Extremal Principle: Let \bar{x} be an extremal point of closed sets A_1, \dots, A_m in an Asplund space X. Then for any $\varepsilon > 0$ there exist $a_i \in A_i \cap B(\bar{x}, \varepsilon)$ such that

$$
x_i^* \in \hat{N}(A_i, a_i) + \varepsilon B_{X^*}, i = 1, \dots, m, \sum_{i=1}^m x_i^* = 0
$$
 and $\sum_{i=1}^m ||x_i^*|| = 1$.

Corollary. Let \bar{x} be an extremal point of closed sets A_1, \dots, A_m in an Asplund space X, and suppose that all but one of A_1, \cdots, A_m are sequentially normally compact at \bar{x} . Then there exist $x_i^* \in \bar{N}(A_i, \bar{x}), i = 1, \dots, m$, such that

 $x_1^* + \cdots + x_m^* = 0$ and $||x_1^*|| + \cdots + ||x_m^*|| = 1$.

Corollary. Let \bar{x} be an extremal point of closed sets A_1 and A_2 in an Asplund space X, and suppose that A_1 is sequentially normally compact at \bar{x} . Then there exist $x^* \in X^*$ such that

 $||x^*|| = 1$ and $x^* \in \overline{N}(A_1, \overline{x}) \cap -\overline{N}(A_2, \overline{x}).$

If A_1 and A_2 are convex,

$$
x^* \in \overline{N}(A_1, \overline{x}) \cap -\overline{N}(A_2, \overline{x}) \Longleftrightarrow \langle x^*, \overline{x} \rangle = \sup_{x \in A_1} \langle x^*, x \rangle = \inf_{x \in A_2} \langle x^*, x \rangle.
$$

Non-intersection index: For closed sets A_1, \dots, A_m , let

$$
\gamma(A_1, \cdots, A_m) := \inf \left\{ \sum_{i=1}^{m-1} ||x_i - x_m|| : x_i \in A_i, i = 1, \cdots, m \right\}.
$$

$$
\gamma(A_1, A_2) = d(A_1, A_2).
$$

$$
\bigcap_{i=1}^{m} A_i \neq \emptyset \Longrightarrow \gamma(A_1, \cdots, A_m) = 0.
$$

$$
\gamma(A_1,\cdots,A_m)>0\Longrightarrow\bigcap_{i=1}^m A_i=\emptyset.
$$

Theorem 2.1 ([Zheng-Ng, SIOPT, 2011]). Let A_1, \dots, A_m be closed sets in a Banach space X such that $\bigcap_{i=1}^{\infty} A_i = \emptyset$. Let $\varepsilon > 0$ and $a_i \in A_i$ ($1 \leq i \leq m$) be $i=1$ such that $m-$

$$
\sum_{i=1}^{m-1} \|a_i - a_m\| < \gamma(A_1, \cdots, A_m) + \varepsilon.
$$

Then, for any $\lambda > 0$, there exist $\tilde{a}_i \in A_i$ and $a_i^* \in N_c(A_i, \tilde{a}_i) + \frac{\varepsilon B_{X^*}}{\lambda}$ such that the following properties hold: (i) $\sum_{i=1}^{\infty} \|\tilde{a}_i - a_i\| < \lambda.$ (ii) $\max_{1 \le i \le m-1} ||a_i^*|| = 1$ and $\sum_{i=1}^m a_i^* = 0$.

(iii)
$$
\sum_{i=1}^{m-1} \langle a_i^*, \tilde{a}_m - \tilde{a}_i \rangle = \sum_{i=1}^{m-1} ||\tilde{a}_i - \tilde{a}_m||.
$$

Theorem 2.2. Let X be an Asplund space and A_1, \dots, A_m be closed nonempty subsets of X such that $\bigcap A_i = \emptyset$. Let $\varepsilon > 0$ and $a_i \in A_i$ ($1 \le i \le m$) be such that

$$
\sum_{i=1}^{m-1} \|a_i - a_n\| < \gamma(A_1, \cdots, A_m) + \varepsilon. \tag{2.1}
$$

Then, for any $\lambda > 0$ and any $\rho \in (0, 1)$ there exist $\tilde{a}_i \in A_i$ and $a_i^* \in \hat{N}(A_i, \tilde{a}_i) + \frac{\varepsilon B_{X^*}}{N}$ (i = 1, \cdots , m) such that the following properties hold: (i) $\sum_{i=1} |\tilde{a}_i - a_i| < \lambda$. (ii) $\max_{1 \le i \le m-1} ||a_i^*|| = 1$ and $\sum_{i=1}^m a_i^* = 0$. (iii) $\rho \sum_{i=1}^{m-1} \|\tilde{a}_i - \tilde{a}_m\| \le \sum_{i=1}^{m-1} \langle a_i^*, \tilde{a}_m - \tilde{a}_i \rangle.$

(i) and (ii) of Theorem $2.2 \implies$ Extremal Principle.

Corollary 2.1. Let A and B be closed nonempty sets in a Banach space X such that $A \cap B = \emptyset$. Then, for any $\varepsilon > 0$ there exist $a \in A$, $b \in B$ and $a^* \in X^*$ with $||a^*|| = 1$ such that

$$
a^* \in N_c(A, a) \cap (-N_c(B, b) + \varepsilon B_{X^*})
$$

and

$$
||a - b|| = \langle a^*, b - a \rangle < d(A, B) + \varepsilon.
$$

Corollary 2.2. Let A be a closed nonempty set in a Banach (resp. Asplund) space X. Then, for any $x \in X \setminus A$ and any $\varepsilon > 0$, there exist $a \in A$ and $a^* \in N_c(A,a)$ (resp. $a^* \in \hat{N}(A,a)$) such that

 $||a^*|| = 1$ and $(1 - \varepsilon)||x - a|| \le \min\{\langle a^*, x - a \rangle, d(x, A)\}.$

Corollary 2.3. Let A and B be closed sets in a Banach (resp. Asplund) space X such that $A \cap B = \emptyset$. Suppose that B is bounded and convex. Then, for any $\varepsilon > 0$, there exist $a \in A$ and $a^* \in N_c(A, a)$ (resp. $a^* \in N(A, a)$) such that

 $||a^*|| = 1$ and $d(A, B) - \varepsilon < \inf_{x \in B} \langle a^*, x \rangle - \langle a^*, a \rangle$.

If, in addition, A is convex, then

 $d(A, B) - \varepsilon < \inf_{x \in B} \langle a^*, x \rangle - \max_{x \in A} \langle a^*, x \rangle.$

Proof of Theorem 2.2. Define $\varphi : X^m \to \mathbb{R} \cup \{+\infty\}$ as follows

$$
\varphi(x_1, \cdots, x_m) := \sum_{i=1}^{m-1} ||x_i - x_m|| + \delta_{A_1 \times \cdots \times A_m}(x_1, \cdots, x_m) \quad \forall (x_1, \cdots, x_m) \in X^m.
$$

Then φ is a proper lower semicontinuous function on X^m equipped with the ℓ_1 -norm

$$
||(x_1, \cdots, x_m)|| := \sum_{i=1}^m ||x_i|| \quad \forall (x_1, \cdots, x_m) \in X^m
$$

and (2.1) can be rewritten as

$$
\varphi(a_1, \cdots, a_m) < \inf \{ \varphi(x_1, \cdots, x_m) : (x_1, \cdots, x_m) \in X^m \} + \varepsilon.
$$

Take $\varepsilon' \in (0, \varepsilon)$ such that

$$
\varphi(a_1,\dots,a_m) < \inf\{\varphi(x_1,\dots,x_m): (x_1,\dots,x_m) \in X^m\} + \varepsilon'.
$$

Then there exists $\lambda' \in (0, \lambda)$ such that $\frac{\varepsilon'}{\lambda'} < \frac{\varepsilon}{\lambda}$. By the Ekeland variational principle, there exists $(\bar{a}_1, \dots, \bar{a}_m) \in X^m$ such that

$$
\|(\bar{a}_1,\cdots,\bar{a}_m)-(a_1,\cdots,a_m)\|<\lambda'\tag{2.2}
$$

and

$$
\varphi(\bar{a}_1,\dots,\bar{a}_m)\leq \varphi(x_1,\dots,x_m)+\frac{\varepsilon'}{\lambda'}\sum_{i=1}^m||x_i-\bar{a}_i||\quad\forall (x_1,\dots,x_m)\in X^m.
$$

Hence $(\bar{a}_1, \dots, \bar{a}_m) \in A_1 \times \dots \times A_m$ is a minimizer of $\varphi + \frac{\varepsilon'}{N}$. $-({\bar a}_1,\cdots,{\bar a}_m)\|_{X^m}$. It follows that $\sigma:=\sum_{i=1}^{m-1}\|{\bar a}_i-{\bar a}_m\|>0$ and

$$
0 \in \hat{\partial}\left(\varphi + \frac{\varepsilon'}{\lambda'} \|\cdot - (\bar{a}_1, \cdots, \bar{a}_m) \|_{X^m}\right) (\bar{a}_1, \cdots, \bar{a}_m)
$$

= $\hat{\partial}(f + \delta_{A_1 \times \cdots \times A_m})(\bar{a}_1, \cdots, \bar{a}_m)$ (2.3)

where

$$
f(x_1, \dots, x_m) := \sum_{i=1}^{m-1} ||x_i - x_m|| + \frac{\varepsilon'}{\lambda'} \sum_{i=1}^m ||x_i - \bar{a}_i|| \quad \forall (x_1, \dots, x_m) \in X^m
$$

Preliminaries Fuzzy separation... Convex case Well solvability of...

Thus, by (2.3) and Theorem II, for any $\beta \in (0, \min\{\frac{\varepsilon}{\lambda} - \frac{\varepsilon'}{\lambda'}, \lambda - \lambda', \frac{\sigma}{m}\})$ there exist

$$
(\bar{x}_1,\cdots,\bar{x}_m),(\tilde{a}_1,\cdots,\tilde{a}_m)\in B_{X^m}((\bar{a}_1,\cdots,\bar{a}_m),\beta)
$$
 (2.4)

such that

$$
0 \in \hat{\partial} f(\bar{x}_1, \dots, \bar{x}_m) + \hat{\partial} \delta_{A_1 \times \dots \times A_m}(\tilde{a}_1, \dots, \tilde{a}_m) + \beta B_{X^*}^m
$$

= $\hat{\partial} f(\bar{x}_1, \dots, \bar{x}_m) + \hat{N}(A_1 \times \dots \times A_m, (\tilde{a}_1, \dots, \tilde{a}_m)) + \beta B_{X^*}^m$
= $\hat{\partial} f(\bar{x}_1, \dots, \bar{x}_m) + \hat{N}(A_1, \tilde{a}_1) \times \dots \times \hat{N}(A_m, \tilde{a}_m) + \beta B_{X^*}^m.$ (2.5)

Exact Separation

Theorem 2.3. Let A_1, \dots, A_m be closed sets in a Banach space X such that $\bigcap A_i = \emptyset$, and suppose that there exist $a_i \in A_i$ $(i = 1, \dots, m)$ such that $i=1$

$$
\sum_{i=1}^{m-1} \|a_i - a_m\| = \gamma(A_1, \cdots, A_m).
$$
 (2.6)

Then there exist $a_i^* \in X^*$ ($1 \le i \le m$) with the following properties: (i) $\max_{1 \leq i \leq m-1} ||a_i^*|| = 1$, $\sum_{i=1}^m a_i^* = 0$ and $a_i^* \in N_c(A_i, a_i)$ $(i = 1, \dots, m)$. (ii) $\sum_{i=1}^{m-1} \langle a_i^*, a_m - a_i \rangle = \sum_{i=1}^{m-1} ||a_m - a_i||.$

Theorem 2.4. Let A_1, \dots, A_m be closed sets in an Asplund space X such that $\bigcap A_i = \emptyset$. Further suppose that A_m is compact. Let $\varepsilon > 0$ and $a_i \in A_i$ $i=1$
(1 $\leq i \leq m$) be such that

$$
\sum_{i=1}^{m-1} ||a_i - a_m|| < \gamma(A_1, \cdots, A_m) + \varepsilon.
$$

Then, for any $\lambda > 0$ and any $\rho \in (0, 1)$ there exist $\tilde{a}_i \in A_i$ and $a_i^* \in X^*$ with the following properties:

(i)
$$
\sum_{i=1}^{m} ||\tilde{a}_i - a_i|| < \lambda
$$
.
\n(ii) $\max_{1 \le i \le m-1} ||a_i^*|| = 1$, $\sum_{i=1}^{n} a_i^* = 0$ and $a_i^* \in \hat{N}(A_i, \tilde{a}_i)$ $(i = 1, \dots, m)$.
\n(iii) $\rho \sum_{i=1}^{m-1} ||\tilde{a}_i - \tilde{a}_m|| \le \sum_{i=1}^{m-1} \langle a_i^*, \tilde{a}_m - \tilde{a}_i \rangle$.

3 **Convex case**

Theorem S1. Let A and B be convex sets in a normed space X such that $\text{int}(B) \neq \emptyset$ and $A \cap \text{int}(B) = \emptyset$. Then there exists $x^* \in X^* \setminus \{0\}$ such that

$$
\inf_{x \in A} \langle x^*, x \rangle \ge \sup_{x \in B} \langle x^*, x \rangle. \tag{3.7}
$$

Theorem S2. Let A be a compact convex set in a normed space X and let B be a closed convex set in X such that $A \cap B = \emptyset$. Then there exists $x^* \in X^*$ such that

$$
\inf_{x \in A} \langle x^*, x \rangle > \sup_{x \in B} \langle x^*, x \rangle. \tag{3.8}
$$

Strict separation property: a closed convex set A in a normed space X is said to have strict separation property if for every closed convex set B in X with $A \cap B = \emptyset$ there exists $x^* \in X^*$ such that (3.8) holds.

A compact convex set has trivially the strict separation property.

Theorem GW ([Gau-Wong, PAMS, 1996]). Let A be a bounded closed convex subset of a normed space such that $\text{int}(A) \neq \emptyset$. Then A has the strict separation property if and only if A is weakly compact.

Theorem GK ([Gale-Klee, Math. Scan., 1959]). Let A be a closed convex set in \mathbb{R}^n . Then A has the strict separation property if and only if A is continuous, that is,

$$
\sigma_A(x^*) := \sup_{x \in A} \langle x^*, x \rangle = \lim_{u^* \to x^*} \sigma_A(u^*) \quad \forall x^* \in \mathbb{R}^n \setminus \{0\}.
$$

Theorem ETZ ([Ernst-Théra-Zalinnescu, JFA, 2005]). Let A be a closed convex set in a reflexive Banach space. Then A has the strict separation property if and only if A is slice-continuous (i.e., for every closed subspace Y of X, $A \cap Y$ is a continuous set in Y).

From the view point of optimization, it should be interesting to consider whether or not the linear functional x^* in either (3.7) or (3.8) can attain its infimum and supremum over A and B , respectively. However, even in Euclidean space \mathbb{R}^2 , there exist two disjoint closed convex sets A and B with $\text{int}(B) \neq \emptyset$ such that they cannot be separated attainably, namely there exists no $y^* \in (\mathbb{R}^2)^* \setminus \{0\}$ satisfying

$$
\langle y^*, a \rangle = \inf_{x \in A} \langle y^*, x \rangle \ge \sup_{x \in B} \langle y^*, x \rangle = \langle y^*, b \rangle \text{ for some } (a, b) \in A \times B
$$

Two kinds of attainable separation properties

Definition 3.1. A closed convex set A in a normed space X is said to have attainable separation property if for every closed convex subset B of X with $\text{int}(B) \neq \emptyset$ and $A \cap \text{int}(B) = \emptyset$ there exist $x^* \in X^* \setminus \{0\},$ $a \in A$ and $b \in B$ such that

$$
\langle x^*, a \rangle = \inf_{x \in A} \langle x^*, x \rangle \ge \sup_{x \in B} \langle x^*, x \rangle = \langle x^*, b \rangle. \tag{3.9}
$$

Definition 3.2. A closed convex set A in a normed space X is said to have attainable strict separation property if for every closed convex nonempty subset B of X with $A \cap B = \emptyset$ there exist $x^* \in X^*$, $a \in A$ and $b \in B$ such that

$$
\langle x^*, a \rangle = \inf_{x \in A} \langle x^*, x \rangle > \sup_{x \in B} \langle x^*, x \rangle = \langle x^*, b \rangle.
$$
 (3.10)

(*) $(3.9) \Longleftrightarrow |x^* \in N(B,b) \cap -N(A,a) \& \langle x^*, a-b \rangle \geq 0|.$

Proposition 3.1. Let A be a bounded closed convex set in a Banach space X. Then the following statements are equivalent: (i) A has the attainable separation property. (ii) A has the attainable strict separation property. (iii) A has the strict separation property. (iv) A is weakly compact.

To consider the unbounded case, we adopt the following notion of an asymptotic hyperplane of A: a hyperplane $\mathcal{P}(x^*, \alpha) := \{x \in X : \langle x^*, x \rangle = \alpha\}$ with $(x^*, \alpha) \in (X^* \setminus \{0\}) \times \mathbb{R}$ is called an asymptotic hyperplane of A if $\langle x^*, x \rangle \leq \alpha$ for all $x \in A$ (i.e., $\sigma_A(x^*) \leq \alpha$) and there exists a sequence $\{a_n\}$ in A such that

 $\lim_{n\to\infty} ||a_n|| = \infty$ and $\lim_{n\to\infty} d(a_n, \mathcal{P}(x^*, \alpha)) = 0.$

Theorem 3.1. Let X be a reflexive Banach space and A an unbounded closed convex subset of X . Then the following statements are equivalent: (i) A has the attainable strict separation property. (ii) For every closed convex set B in X with $A \cap B = \emptyset$ there exist $a \in A$, $b \in B$ and $x^* \in N(B, b) \cap -N(A, a)$ such that $||x^*|| = 1$ and

 $\langle x^*, a \rangle - \langle x^*, b \rangle = ||a - b|| = d(A, B).$

(iii) A has no asymptotic hyperplane and $\text{int}(A)$ is nonempty. (iv) A is continuous and $\text{int}(A)$ is nonempty. (v) $A - B$ is closed for any closed convex set B disjoint with A.

Theorem 3.2. Let X be a Banach space. Then the following statements are *equivalent.*

 (i) X is reflexive.

(ii) Every closed convex subset of X having no asymptotic hyperplane has the *attainable separation property.*

(iii) Every unbounded continuous closed convex subset of X having a nonempty interior has the attainable strict separation property. (iv) There exist a closed subspace Y of X with $\text{codim}(Y) = 1$ and an element e

in $X \setminus Y$ such that

 $A(Y, e) := \{y + te : (y, t) \in Y \times \mathbb{R} \text{ and } ||y||^2 \le t\}$ (3.11)

has the attainable separation property.

(v) For any closed subspace Y of X with $\text{codim}(Y) = 1$ and any element e in $X \setminus Y$, $A(Y, e)$ defined by (3.11) has the attainable strict separation property.

Proposition 3.2. Let X be a finite-dimensional normed space and let A be a closed convex nonempty subset of X . Then the following statements are equivalent:

(i) $\mathcal{S}(A, x^*)$ is a bounded nonempty set for each $x^* \in \text{bar}(A) \setminus \{0\}.$

- (ii) A has no asymptotic hyperplane.
- (iii) A is continuous.
- (iv) A has the attainable strict separation property.
- (v) A has the attainable separation property.
- (vi) A has the strict separation property.
- (vii) $A B$ is closed for every closed convex subset B of X.

(viii) $A - B$ is closed for every closed convex subset B of X with $\text{int}(B) \neq \emptyset$ and $A \cap B = \emptyset$.

4 Well solvability of convex optimization problems

Theorem ETZ2 ([Ernst-Théra-Zalinescu, JFA, 2005]). Let X be a reflexive Banach space and $f: X \to \mathbb{R}$ be a nonconstant continuous convex function such that $f(x_0) = \min_{x \in X} f(x)$ for some $x_0 \in X$. Then for any closed convex set A in X there exists $a \in A$ such that $f(a) = \min_{x \in A} f(x)$ if and only if $f^{-1}(-\infty, \lambda]$ is slice-continuous for all $\lambda \geq \inf_{x \in X} f(x)$.

Remark. In Theorem ETZ2, the objective f is a fixed continuous convex function, while the constrained sets are all closed convex sets in the concerned space.

Next, we will consider, from a different angle than Theorem ETZ2, a fixed closed convex set A in a Banach space X such that for every continuous (even **lower semicontinuous) convex function** $f : X \to \mathbb{R}$ with $\inf_{x \in A} f(x) > -\infty$ the corresponding optimization problem

minimize $f(x)$ subject to $x \in A$ $\mathcal{P}_A(f)$

is well solvable in the sense of various well-posedness.

Tychnov's well-posedness: a proper lower semicontinuous extended-real function f on a normed space X is said to have the well-posedness property if every minimizing sequence $\{x_n\}$ of f (i.e. $\lim_{n\to\infty} f(x_n) = \inf_{x\in X} f(x)$) is convergent, while f is said to have the generalized well-posedness property if every minimizing sequence $\{x_n\}$ of f has a convergent subsequence.

The well-posedness and generalized well-posedness have been recognized to be useful in optimization and studied extensively.

Definition 4.1 Given a closed convex set A in a normed linear space X and a proper lower semicontinuous convex function $f: X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > -\infty$, the corresponding constrained optimization problem $\mathcal{P}_A(f)$ is said to be

(i) well-posed-solvable if every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ (i.e., $\{x_n\} \subset A$ and $f(x_n) \to \inf_{x \in A} f(x)$ is convergent;

(ii) G-well-posed-solvable if every minimizing sequence of $\mathcal{P}_A(f)$ has a convergent subsequence;

(iii) *W*-well-posed-solvable if every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ is *weakly convergent;*

(iv) WG-well-posed-solvable if every minimizing sequence of $P_A(f)$ has a *weakly convergent subsequence;*

(v) boundedly solvable if the solution set $S(A, f) := \{a \in A : f(a) =$ $\inf_{x \in A} f(x)$ is bounded and nonempty.

Proposition 4.1 Let A be a closed convex set in a normed linear space X and let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous continuous convex function. Then the following statements hold: (i) $P_A(f)$ is G-well-posed-solvable if and only if the solution set $S(A, f)$ is a compact nonempty set and $d(x_n, S(A, f)) \rightarrow 0$ for every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$.

(ii) $P_A(f)$ is WG-well-posed-solvable if and only if $\mathcal{S}(A, f)$ is a weakcompact nonempty set and every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ converges to $\mathcal{S}(A, f)$ with respect to the weak topology, that is, for any weak neighborhood U of 0 there exists N such that $x_n \in \mathcal{S}(A, f) + U$ for all $n > N$.

The main aims of this talk are to study the following two topics:

(T1) Characterize a given closed convex set A in a Banach space X such that for every convex continuous function $f: X \to \mathbb{R}$ with $\inf_{x \in A} f(x) > -\infty$ the corresponding optimization problem $\mathcal{P}_A(f)$ is well-posed solvable, G-well-posed solvable or WG-well-posed solvable.

Preliminaries **Fuzzy separation** Convex case

Well solvability of...

Home Page

标题页

第36页共50页

返 回

退出全屏显示

关 闭

退 出

 \blacktriangleright

(T2) Find some conditions on a given real-valued continuous convex function f on a Banach space X such that for every closed convex subset A of X the corresponding optimization problem $P_A(f)$ is solvable or well-posed solvable.

$4.1.$ Slice property, continuity and differentiability

Let A be a closed convex set in a normed space X. Recall that the support functional and the bar cone of A are respectively defined by

 $\sigma_A(x^*):=\sup_{x\in A}\langle x^*,x\rangle\quad \forall x^*\in X^*$

and

$$
bar(A) := dom(\sigma_A) = \{ x^* \in X^* : \ \sigma_A(x^*) < +\infty \}.
$$

For $x^* \in \text{bar}(A)$ and $\varepsilon > 0$, the corresponding support set and slice of A are defined as

$$
\mathcal{S}(A, x^*) := \{ x \in A : \langle x^*, x \rangle = \sigma_A(x^*) \}
$$

and

$$
\mathcal{S}(A, x^*, \varepsilon) := \{ x \in A : \langle x^*, x \rangle \ge \sigma_A(x^*) - \varepsilon \}.
$$

It is clear that $S(A, x^*) = \bigcap S(A, x^*, \varepsilon)$. $\varepsilon > 0$

Definition 4.2 A closed convex set A in a normed space X is said to have (i) bounded slice property if for each $x^* \in \text{bar}(A) \setminus \{0\}$ there exists $\varepsilon > 0$ such that $S(A, x^*, \varepsilon)$ is bounded, and (ii) strong slice property if $\lim_{\varepsilon \to 0^+}$ diam $(\mathcal{S}(A, x^*, \varepsilon)) = 0$ for all $x^* \in$ bar $(A) \setminus \{0\},$ where $\text{diam}(\mathcal{S}(A, x^*, \varepsilon)) := \sup\{||x_1 - x_2|| : x_1, x_2 \in \mathcal{S}(A, x^*, \varepsilon)\}.$

Lemma 4.1 Let A be a closed convex set in a normed space X. The following statements hold:

(i) $\mathcal{S}(A, x^*, \varepsilon) \subset \partial \sigma_A(B(x^*, \sqrt{\varepsilon})) + \sqrt{\varepsilon} B_{X^{**}} \quad \forall (x^*, \varepsilon) \in \text{bar}(A) \times (0, +\infty),$ where $B_{X^{**}}$ denotes the unit ball of the bidual space X^{**} . (ii) For any $x^* \in \text{bar}(A) \setminus \{0\}$ there exist $\varepsilon_0, L_0 \in (0, +\infty)$ such that

 $\partial \sigma_A(B(x^*,\varepsilon)) \subset \overline{\mathcal{S}(A,x^*,L_0\varepsilon)}^{w^*}$ $\forall \varepsilon \in (0,\varepsilon_0).$

Consequently $\lim_{\varepsilon \to 0^+}$ diam $(\partial \sigma_A(B(x^*, \varepsilon)) = \lim_{\varepsilon \to 0^+}$ diam $(\mathcal{S}(A, x^*, \varepsilon))$ for all $x^* \in$ $bar(A) \setminus \{0\}$

Proposition 4.2. Let A be a closed convex set in a normed space X and let $x_0^* \in \text{bar}(A) \setminus \{0\}$. Then the following statements are equivalent. (i) $\mathcal{S}(A, x_0^*, \varepsilon)$ is bounded for all $\varepsilon \in (0, +\infty)$. (ii) There exists $\varepsilon_0 > 0$ such that $\mathcal{S}(A, x_0^*, \varepsilon_0)$ is bounded. (*iii*) $x_0^* \in \text{int}(\text{bar}(A)).$ (iv) σ_A is continuous at x_0^* . (v) There exist $\varepsilon_0, \delta_0 \in (0, +\infty)$ such that

$$
\sup \left\{ \|x\| : x \in \bigcup_{x^* \in B(x_0^*, \delta_0)} \mathcal{S}(A, x^*) \right\} < +\infty
$$

Proposition 4.3. Let A be a closed convex set in a finite-dimensional normed space X and let $x_0^* \in \text{bar}(A) \setminus \{0\}$ be such that the support set $\mathcal{S}(A, x_0^*)$ is bounded and nonempty. Then the slice $\mathcal{S}(A, x_0^*, \varepsilon)$ is bounded for all $\varepsilon > 0$, and

 $\lim_{\varepsilon \to 0^+} \sup_{x \in \mathcal{S}(A, x_0^*, \varepsilon)} d(x, \mathcal{S}(A, x_0^*)) = 0.$

Consequently, $S(A, x_0^*)$ is a singleton if and only if $\lim_{\varepsilon \to 0^+}$ diam $(S(A, x_0^*, \varepsilon)) = 0$.

Theorem 4.1 Let A be a closed convex set in a normed space X . Then the following statements are equivalent: (i) A is continuous. (*ii*) bar(*A*) \setminus {0} *is open.* (iii) A has the bounded slice property.

Definition 4.3 A closed convex set A in a normed space X is said to be differen*tiable if its support functional* σ_A *is differentiable at each point of* dom $(\sigma_A)\setminus\{0\}$.

Every closed ball in a Hilbert space is differentiable. Example 4.1. Let X be a Hilbert space. Then, for any $e \in X \setminus \{0\}$ and $p \in (1, +\infty)$, $A(e, p) := \{x + te : x \in e^{\perp} \& ||x||^p \leq t\}$ is differentiable, where $e^{\perp} = \{x \in X : \langle x, e \rangle = 0\}.$

Proposition 4.4 Let A be a closed convex set in a normed space X. Then A has the strong slice property if and only if A is differentiable.

Preliminaries **Fuzzy separation** Convex case Well solvability of...

Recall that \vec{A} is said to be a Chebychev set (or to have the Chebychev property) if for each $x \in X$ there exists $a \in A$ such that $d(x, A) = ||x - a||$. To characterize further the strong slice property, we adopt the following notion: A is said to have the S-Chebychev property if for every closed convex set B with $d(A, B) > 0$ there exists a unique $a \in A$ such that $d(a, B) = d(A, B)$ and $\lim_{n\to\infty} ||a_n-a|| = 0$ for any sequence $\{a_n\} \subset A$ with $\lim_{n\to\infty} d(a_n, B) = d(A, B)$.

Proposition 4.5 Given a closed convex set A in a Banach space X , the following statements hold:

(i) A is differentiable if and only if A has the S-Chebychev property. (ii) If, in addition, $\text{int}(A) \neq \emptyset$, then A is differentiable if and only if for every closed convex set B disjoint with A there exists a unique $a \in A$ such that $d(a, B) = d(A, B)$ and $\lim_{n \to \infty} ||a_n - a|| = 0$ for any sequence $\{a_n\} \subset A$.

Proposition 4.6 Let X be a Banach space and Y be a closed subspace of X such that $\text{codim}(Y) = 1$. For $e \in X \setminus Y$ and $p \in (1, +\infty)$, let

> $A_p(Y, e) := \{y + te : y \in Y \text{ and } ||y||^p \le t\}.$ (4.12)

Then the following statements hold:

(i) $A_p(Y, e)$ has the bounded slice property and $\text{int}(A_p(Y, e)) \neq \emptyset$. (ii) If, in addition, X is reflexive and locally uniformly convex, $A_p(Y, e)$ has the *strong slice property.*

Main Results $4.2.$

For a closed convex set A in a normed space X, we adopt the following notation

 $\mathfrak{L}(X|A) := \{u^* \in X^* \setminus \{0\} : \inf_{x \in A} \langle u^*, x \rangle > -\infty\}.$

Let $\mathfrak{C}(X|A)$ denote the family of all continuous convex functions $f: X \to \mathbb{R}$ satisfying $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$.

 $\mathfrak{L}(X|A) \subset \mathfrak{C}(X|A).$

Lemma 4.2. Let A be a closed convex set in a normed space X . Then, for each $f \in \mathfrak{C}(X|A)$, there exists $u_f^* \in \mathfrak{L}(X|A)$ such that every minimizing sequence of the convex optimization problem $P_A(f)$ is a minimizing sequence of the linear *optimization problem* $P_A(u_f^*)$.

Theorem 4.2. Let A be a closed convex set in a Banach space X . Then the following statements are equivalent:

 (i) A is differentiable.

(ii) For any $u^* \in \mathcal{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is well-posed-solvable.

(iii) For any $f \in \mathfrak{C}(X|A)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is well-posed-solvable.

Theorem 4.3 Let A be a closed convex set in a finite dimensional normed space X. Then the following statements are equivalent:

 (i) A is differentiable.

(ii) For any $u^* \in \mathfrak{L}(X|A)$, the corresponding linear optimization problem $P_A(u^*)$ has a unique solution.

(iii) For every proper lower semicontinuous convex function $f : X \rightarrow$ $\mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$, the corresponding convex optimization problem $P_A(f)$ is well-posed-solvable.

Theorem 4.4 Let A be a closed convex set in a reflexive Banach space X . Then the following statements are equivalent:

 (i) A is continuous.

(ii) For any $u^* \in \mathcal{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is WG-well-posed-solvable.

(iii) For any $f \in \mathfrak{C}(X|A)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is WG-well-posed-solvable.

James Theorem ([Ann. Math. 1957] and [Trans. Amer. Math. Soc. 1964]). Let X be a Banach space X. Then X is reflexive if and only if the closed unit ball B_X is weakly compact if and only if for any bounded closed convex set $A \subset X$ and any $x^* \in X^*$, the linear optimization problem $P_A(x^*)$ is solvable. Theorem 4.5. Let X be a reflexive Banach space and let A be an unbounded

closed convex subset of X such that $\text{int}(A) \neq \emptyset$. Then A is continuous if and only if for every proper lower semicontinuous convex function $f: X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is WG-well-posed-solvable.

Theorem 4.6. Let A be a closed convex subset of a finite dimensional normed space X . Then the following statements are equivalent:

 (i) A is continuous.

(ii) For each $u^* \in \mathcal{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is boundedly solvable.

(iii) For every proper lower semicontinuous convex function $f: X \to \mathbb{R} \cup$ $\{+\infty\}$ with $\inf_{x\in A} f(x) > \inf_{x\in X} f(x)$, the corresponding convex optimization problem $P_A(f)$ is G-well-posed-solvable.

$4.3.$ Differtiabilty and continuity of conjugate functions

Recall the conjugate function f^* of f defined by

 $f^*(x^*) := \sup_{x \in X} (\langle x^*, x \rangle - f(x)) \quad \forall x^* \in X^*.$

It is well known that the conjugate function f^* is always lower semicontinuous with respect to the weak* topology on X^* and useful in convex optimization.

Theorem 4.7. Let X be a Banach space and $f: X \to \mathbb{R}$ be a continuous convex function such that f^* is Fréchet differentiable $dom(f^*)$. Then, for every closed convex subset A of X with $-\infty < \inf_{x \in A} f(x)$, the corresponding convex optimization problem $P_A(f)$ is well-posed solvable.

Theorem 4.8. Let X be a reflexive Banach space and $f: X \to \mathbb{R}$ be a continuous convex function such that f^* is is continuous on $dom(f^*)$. Then, for every closed convex subset A of X with $\inf_{x \in A} f(x) > -\infty$, the corresponding optimization problem $P_A(f)$ is WG-well-posed solvable.

Proposition 4.7. Let X be a normed space and $f: X \to \mathbb{R}$ be a continuous convex function. Then $epi(f)$ is differentiable if and only if f^* is Fréchet differentiable on $dom(f^*)$.

Proposition 4.8. Let X be a normed space and $f: X \to \mathbb{R}$ be a continuous convex function. Then the following statements are equivalent: (i) epi (f) is continuous. (*ii*) f^* *is continuous on* dom(f^*). (*iii*) dom(f^*) is open.

References

- [1] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- [2] E. ERNST, M. THÉRA AND C. ZALINESCUC, Slice-continuous sets in reflexive Banach spaces: convex constrained optimization and strict convex separation, J. Fucnt. Anal., 223(2005), pp.179-203.
- [3] D. GALE AND V. KLEE, *Continuous convex sets*, Math. Scan., 7(1959), pp.379-391.
- [4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer-Verlag, New York, 2006.
- [5] B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc., 348 (1996), pp. 1235-1280.
- [6] X. Y. Zheng and K. F. Ng, A unified separation theorem for closed sets in a Banach space and optimimality conditions for vector optimization, SIAM J. Optim., 21 (2011), pp.886-911.
- [7] X. Y. ZHENG, Attainable separation property and asymptotic hyperplane for a closed convex set in a normed space, J. Math. Anal. Appl., 248(2020).

