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1 Preliminaries
Recall that a proper lower semicontinuous function ϕ on a real Banach space X
is Frechet differentiable at x̄ ∈ dom(ϕ) if there exists x∗ ∈ X∗ such that

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉 = o(‖x− x̄‖).

Frechet subdifferential:

∂̂ϕ(x̄) = {x∗ ∈ X∗ : ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉 ≥ o(‖x− x̄‖)}.

x∗ ∈ ∂̂ϕ(x̄)⇐⇒ ∀ε > 0 ∃ δ > 0 s.t.

〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) + ε‖x− x̄‖ ∀x ∈ B(x̄, δ).

ϕ(x̄) = min
x∈B(x̄,δ)

ϕ(x) =⇒ 0 ∈ ∂̂ϕ(x̄).

Viscosity subdifferential:

∂Vϕ(x̄) = {g′(x̄) : ϕ− g attains its local minimum at x̄}.

If X is a smooth space, then ∂Vϕ(x̄) = ∂̂ϕ(x̄).
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Proximal subdifferential: x∗ ∈ ∂pϕ(x̄)⇐⇒ ∃ σ, δ ∈ (0, +∞) s.t.

〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) + σ‖x− x̄‖2 ∀x ∈ B(x̄, δ).

Limit subdifferential: ∂̄ϕ(x̄) := Limsupx→x̄∂̂ϕ(x)

x∗ ∈ ∂̄ϕ(x̄)⇐⇒ ∃xn → x̄&∃x∗n
w∗→ x∗ s.t. x∗n ∈ ∂̂ϕ(xn) (∀n ∈ N).

Clarke subdifferential: ∂ϕ(x̄) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ◦(x̄, h) ∀h ∈ X},

ϕ◦(x̄, h) := lim
ε→0+

lim sup
x→f x̄,t→0+

inf
v∈B(h,ε)

ϕ(x+ tv)− ϕ(x)

t
.

Local Lipschitz property of ϕ =⇒ ϕ◦(x̄, h) = lim sup
x→x̄,t→0+

ϕ(x+th)−ϕ(x)
t .

http://192.9.200.1
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1. ∂pϕ(x̄) ⊂ ∂Vϕ(x̄) ⊂ ∂̂ϕ(x̄) ⊂ ∂̄ϕ(x̄) ⊂ ∂ϕ(x̄).
2. If ϕ is smooth around x̄, then ∂̂ϕ(x̄) = ∂ϕ(x̄) = {ϕ′(x̄)}

3. If ϕ is smooth around x̄ and x 7→ ϕ′(x) is locally Lipschiz at x̄, then

∂pϕ(x̄) = ∂ϕ(x̄) = {ϕ′(x̄)}.

4. If ϕ is convex, then

∂pϕ(x̄) = ∂ϕ(x̄) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) ∀x ∈ X}.

5. If dim(X) <∞ and ϕ is locally Lipschitz at x̄ ∈ dom(ϕ), then

∂ϕ(x̄) = co
{

lim
n→∞

ϕ′(xn) : xn → x, ϕ is Frechet differentiable at each xn

}
.
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Theorem I. Let X be a Banach space and ϕ, ψ : X → R ∪ {+∞} be proper
lower semicontinuous functions. The following statements hold:
(i) dom(∂ϕ) is dense in dom(ϕ).
(ii) If ψ is locally Lipschitzat x̄ ∈ dom(ϕ), then

∂(ϕ+ ψ)(x̄) ⊂ ∂ϕ(x̄) + ∂ψ(x̄).

If ϕ(x) = −‖x‖ for all x ∈ `1, then dom(∂̂ϕ) = dom(∂̄ϕ) = ∅.

Theorem II. Let X be an Asplund space and let ϕ, ψ : X → R ∪ {+∞} be
proper lower semicontinuous functions. The following statements hold:
(i) dom(∂̂ϕ) is dense in dom(ϕ).
(ii) If ψ is locally Lipschitz at x̄ ∈ dom(ϕ), then for any x∗ ∈ ∂̂(ϕ+ ψ)(x̄) and
any ε > 0 there exist x1, x2 ∈ B(x̄, ε) such that

x∗ ∈ ∂̂ϕ(x1) + ∂̂ψ(x2) + εBX∗ and |ϕ(x1)− ϕ(x̄)| < ε

and so ∂̄(ϕ+ ψ)(x̄) ⊂ ∂̄ϕ(x̄) + ∂̄ψ(x̄).
(iii) ∂ϕ(x̄) = clw

∗ (
co
(
∂̄ϕ(x̄) + ∂̄∞ϕ(x̄)

))
.
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A—a closed set in a Banach space X , a ∈ A.

Bouligand tangent cone:

T (A, a) = {h ∈ X : ∃tn → 0+ & ∃hn → h s.t. a+ tnhn ∈ A ∀n ∈ N}.

Clarke tangent cone:

TC(A, a) := {h ∈ X : ∀an
A→ a& ∀sn → 0+ ∃hn → h

s.t. an + snhn ∈ A ∀n ∈ N}.

TC(A, a) ⊂ T (A, a)

Clarke normal cone:

NC(A, a) := TC(A, a)◦ = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ TC(A, a)}.

http://192.9.200.1
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Frechet normal cone:

N̂(A, a) :=

{
x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x− a〉
‖x− a‖

≤ 0

}

If X is an Asplund space,
{
a ∈ A : N̂(A, a) 6= {0}

}
is dense in bd(A).

Proximal normal cone:

N̂p(A, a) :=

{
x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x− a〉
‖x− a‖2

< +∞

}

If X is a Hilbert space, x∗ ∈ NP (A, a) ⇔ a ∈ PA(a + tx∗) for some t > 0,
and

{
a ∈ A : Np(A, a) 6= {0}

}
is dense in bd(A).

Proximal point: a point a is called a proximal point of A if a ∈ PA(x) for some
x ∈ X \ A.
In 2010, Borwein [1] asked the following/most striking0open question: Is it
possible that in every reflexive Banach space, the proximal points on bd(Ω) are
dense in bd(Ω)?

http://192.9.200.1
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Limit normal cone: N̄(A, a) := Limsup
x

A→aN̂(A, x)

x∗ ∈ N̄(A, a)⇐⇒ ∃xn
A→ a& ∃x∗n

w∗→ x∗ s.t. x∗n ∈ N̂(A, xn) (∀n ∈ N).

N̂(A, a) ⊂ N̄(A, a) ⊂ NC(A, a).

If X is an Asplund space, then NC(A, a) = clw
∗ (

co
(
N̄(A, a)

))
.

A∩B(a, r) = B∩B(a, r) =⇒ N̂(A, a) = N̂(B, a) &NC(A, a) = NC(B, a).

N̂(A, a) = ∂̂δA(a), N̄(A, a) = ∂̄δA(a), NC(A, a) = ∂δA(a).

http://192.9.200.1
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If A is convex, then

T (A, a) = TC(A, a) = cl(R+(A− a))

and
N̂(A, a) = NC(A, a) = {x∗ ∈ X∗ : 〈x∗, a〉 = sup

x∈A
〈x∗, x〉}.

ϕ : X → R ∪ {+∞}—a proper lower semicontinuous function

∂̂ϕ(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̂(epi(ϕ), (x, ϕ(x)))}
∂̄ϕ(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̄(epi(ϕ), (x, ϕ(x)))}
∂ϕ(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ NC(epi(ϕ), (x, ϕ(x)))},

where epi(ϕ) = {(x, t) ∈ X × R : ϕ(x) ≤ t}.

http://192.9.200.1
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2 Fuzzy separation theorems for disjoint
closed sets

Extremal point: A common point x̄ of closed setsA1, · · · , Am in a normed space
is called an extremal point of these closed sets if there exist a neighborhood V
of x̄ and m sequences x1k → 0, · · · , xmk → 0 such that

m⋂
i=1

(Ai − xik) ∩ V = ∅ ∀k ∈ N.

Extremal Principle: Let x̄ be an extremal point of closed sets A1, · · · , Am in an
Asplund space X . Then for any ε > 0 there exist ai ∈ Ai ∩B(x̄, ε) such that

x∗i ∈ N̂(Ai, ai) + εBX∗, i = 1, · · · ,m,
m∑
i=1

x∗i = 0 and
m∑
i=1

‖x∗i‖ = 1.

http://192.9.200.1
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Corollary. Let x̄ be an extremal point of closed sets A1, · · · , Am in an Asplund
space X , and suppose that all but one of A1, · · · , Am are sequentially normally
compact at x̄. Then there exist x∗i ∈ N̄(Ai, x̄), i = 1, · · · ,m, such that

x∗1 + · · ·+ x∗m = 0 and ‖x∗1‖+ · · ·+ ‖x∗m‖ = 1.

Corollary. Let x̄ be an extremal point of closed sets A1 and A2 in an Asplund
spaceX , and suppose thatA1 is sequentially normally compact at x̄. Then there
exist x∗ ∈ X∗ such that

‖x∗‖ = 1 and x∗ ∈ N̄(A1, x̄) ∩ −N̄(A2, x̄).

If A1 and A2 are convex,

x∗ ∈ N̄(A1, x̄) ∩ −N̄(A2, x̄)⇐⇒ 〈x∗, x̄〉 = sup
x∈A1

〈x∗, x〉 = inf
x∈A2

〈x∗, x〉.

http://192.9.200.1
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Non-intersection index: For closed sets A1, · · · , Am, let

γ(A1, · · · , Am) := inf

{
m−1∑
i=1

‖xi − xm‖ : xi ∈ Ai, i = 1, · · · ,m

}
.

γ(A1, A2) = d(A1, A2).

m⋂
i=1

Ai 6= ∅ =⇒ γ(A1, · · · , Am) = 0.

γ(A1, · · · , Am) > 0 =⇒
m⋂
i=1

Ai = ∅.

http://192.9.200.1
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Theorem 2.1 ([Zheng-Ng, SIOPT, 2011]). Let A1, · · · , Am be closed sets in a

Banach space X such that
m⋂
i=1

Ai = ∅. Let ε > 0 and ai ∈ Ai (1 ≤ i ≤ m) be

such that
m−1∑
i=1

‖ai − am‖ < γ(A1, · · · , Am) + ε.

Then, for any λ > 0, there exist ãi ∈ Ai and a∗i ∈ Nc(Ai, ãi) + εBX∗
λ such that

the following properties hold:

(i)
m∑
i=1

‖ãi − ai‖ < λ.

(ii) max
1≤i≤m−1

‖a∗i‖ = 1 and
m∑
i=1

a∗i = 0.

(iii)
m−1∑
i=1

〈a∗i , ãm − ãi〉 =
m−1∑
i=1

‖ãi − ãm‖.

http://192.9.200.1
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Theorem 2.2. Let X be an Asplund space and A1, · · · , Am be closed nonempty

subsets of X such that
m⋂
i=1

Ai = ∅. Let ε > 0 and ai ∈ Ai (1 ≤ i ≤ m) be such

that
m−1∑
i=1

‖ai − an‖ < γ(A1, · · · , Am) + ε. (2.1)

Then, for any λ > 0 and any ρ ∈ (0, 1) there exist ãi ∈ Ai and
a∗i ∈ N̂(Ai, ãi) + εBX∗

λ (i = 1, · · · ,m) such that the following properties
hold:
(i)

m∑
i=1

‖ãi − ai‖ < λ.

(ii) max
1≤i≤m−1

‖a∗i‖ = 1 and
m∑
i=1

a∗i = 0.

(iii) ρ
m−1∑
i=1

‖ãi − ãm‖ ≤
m−1∑
i=1

〈a∗i , ãm − ãi〉.

(i) and (ii) of Theorem 2.2=⇒Extremal Principle.

http://192.9.200.1
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Corollary 2.1. Let A and B be closed nonempty sets in a Banach space X such
that A∩B = ∅. Then, for any ε > 0 there exist a ∈ A, b ∈ B and a∗ ∈ X∗ with
‖a∗‖ = 1 such that

a∗ ∈ Nc(A, a) ∩
(
−Nc(B, b) + εBX∗

)
and

‖a− b‖ = 〈a∗, b− a〉 < d(A,B) + ε.

Corollary 2.2. Let A be a closed nonempty set in a Banach (resp. Asplund)
space X . Then, for any x ∈ X \ A and any ε > 0, there exist a ∈ A and
a∗ ∈ Nc(A, a) (resp. a∗ ∈ N̂(A, a)) such that

‖a∗‖ = 1 and (1− ε)‖x− a‖ ≤ min{〈a∗, x− a〉, d(x,A)}.

http://192.9.200.1
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Corollary 2.3. Let A and B be closed sets in a Banach (resp. Asplund) space
X such that A ∩ B = ∅. Suppose that B is bounded and convex. Then, for any
ε > 0, there exist a ∈ A and a∗ ∈ Nc(A, a) (resp. a∗ ∈ N̂(A, a)) such that

‖a∗‖ = 1 and d(A,B)− ε < inf
x∈B
〈a∗, x〉 − 〈a∗, a〉.

If, in addition, A is convex, then

d(A,B)− ε < inf
x∈B
〈a∗, x〉 −max

x∈A
〈a∗, x〉.

http://192.9.200.1
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Proof of Theorem 2.2. Define ϕ : Xm → R ∪ {+∞} as follows

ϕ(x1, · · · , xm) :=
m−1∑
i=1

‖xi−xm‖+δA1×···×Am
(x1, · · · , xm) ∀(x1, · · · , xm) ∈ Xm.

Then ϕ is a proper lower semicontinuous function on Xm equipped with the
`1-norm

‖(x1, · · · , xm)‖ :=
m∑
i=1

‖xi‖ ∀(x1, · · · , xm) ∈ Xm

and (2.1) can be rewritten as

ϕ(a1, · · · , am) < inf{ϕ(x1, · · · , xm) : (x1, · · · , xm) ∈ Xm}+ ε.

Take ε′ ∈ (0, ε) such that

ϕ(a1, · · · , am) < inf{ϕ(x1, · · · , xm) : (x1, · · · , xm) ∈ Xm}+ ε′.

Then there exists λ′ ∈ (0, λ) such that ε′

λ′ <
ε
λ. By the Ekeland variational

principle, there exists (ā1, · · · , ām) ∈ Xm such that

http://192.9.200.1
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‖(ā1, · · · , ām)− (a1, · · · , am)‖ < λ′ (2.2)

and

ϕ(ā1, · · · , ām) ≤ ϕ(x1, · · · , xm) +
ε′

λ′

m∑
i=1

‖xi − āi‖ ∀(x1, · · · , xm) ∈ Xm.

Hence (ā1, · · · , ām) ∈ A1 × · · · × Am is a minimizer of ϕ + ε′

λ′‖ ·

−(ā1, · · · , ām)‖Xm. It follows that σ :=
m−1∑
i=1

‖āi − ām‖ > 0 and

0 ∈ ∂̂

(
ϕ+

ε′

λ′
‖ · −(ā1, · · · , ām)‖Xm

)
(ā1, · · · , ām)

= ∂̂(f + δA1×···×Am
)(ā1, · · · , ām) (2.3)

where

f(x1, · · · , xm) :=
m−1∑
i=1

‖xi − xm‖+
ε′

λ′

m∑
i=1

‖xi − āi‖ ∀(x1, · · · , xm) ∈ Xm.

http://192.9.200.1
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Thus, by (2.3) and Theorem II, for any β ∈
(

0, min{ ελ −
ε′

λ′ , λ− λ
′, σm}

)
there

exist
(x̄1, · · · , x̄m), (ã1, · · · , ãm) ∈ BXm((ā1, · · · , ām), β) (2.4)

such that

0 ∈ ∂̂f(x̄1, · · · , x̄m) + ∂̂δA1×···×Am
(ã1, · · · , ãm) + βBm

X∗

= ∂̂f(x̄1, · · · , x̄m) + N̂(A1 × · · · × Am, (ã1, · · · , ãm)) + βBm
X∗

= ∂̂f(x̄1, · · · , x̄m) + N̂(A1, ã1)× · · · × N̂(Am, ãm) + βBm
X∗. (2.5)

http://192.9.200.1
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Exact Separation

Theorem 2.3. Let A1, · · · , Am be closed sets in a Banach space X such that
m⋂
i=1

Ai = ∅, and suppose that there exist ai ∈ Ai (i = 1, · · · ,m) such that

m−1∑
i=1

‖ai − am‖ = γ(A1, · · · , Am). (2.6)

Then there exist a∗i ∈ X∗ (1 ≤ i ≤ m) with the following properties:

(i) max
1≤i≤m−1

‖a∗i‖ = 1,
m∑
i=1

a∗i = 0 and a∗i ∈ Nc(Ai, ai) (i = 1, · · · ,m).

(ii)
m−1∑
i=1

〈a∗i , am − ai〉 =
m−1∑
i=1

‖am − ai‖.

http://192.9.200.1
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Theorem 2.4. Let A1, · · · , Am be closed sets in an Asplund space X such that
m⋂
i=1

Ai = ∅. Further suppose that Am is compact. Let ε > 0 and ai ∈ Ai

(1 ≤ i ≤ m) be such that

m−1∑
i=1

‖ai − am‖ < γ(A1, · · · , Am) + ε.

Then, for any λ > 0 and any ρ ∈ (0, 1) there exist ãi ∈ Ai and a∗i ∈ X∗ with
the following properties:

(i)
m∑
i=1

‖ãi − ai‖ < λ.

(ii) max
1≤i≤m−1

‖a∗i‖ = 1,
n∑
i=1

a∗i = 0 and a∗i ∈ N̂(Ai, ãi) (i = 1, · · · ,m).

(iii) ρ
m−1∑
i=1

‖ãi − ãm‖ ≤
m−1∑
i=1

〈a∗i , ãm − ãi〉.

http://192.9.200.1
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3 Convex case

Theorem S1. Let A and B be convex sets in a normed space X such that
int(B) 6= ∅ and A ∩ int(B) = ∅. Then there exists x∗ ∈ X∗ \ {0} such
that

inf
x∈A
〈x∗, x〉 ≥ sup

x∈B
〈x∗, x〉. (3.7)

Theorem S2. Let A be a compact convex set in a normed space X and let B be
a closed convex set in X such that A ∩ B = ∅. Then there exists x∗ ∈ X∗ such
that

inf
x∈A
〈x∗, x〉 > sup

x∈B
〈x∗, x〉. (3.8)
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Strict separation property: a closed convex set A in a normed space X

is said to have strict separation property if for every closed convex set

B in X with A ∩B = ∅ there exists x∗ ∈ X∗ such that (3.8) holds.

A compact convex set has trivially the strict separation property.

Theorem GW ([Gau-Wong, PAMS, 1996]). Let A be a bounded closed
convex subset of a normed space such that int(A) 6= ∅. Then A has the
strict separation property if and only if A is weakly compact.
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Theorem GK ([Gale-Klee, Math. Scan., 1959]). Let A be a closed

convex set in Rn. Then A has the strict separation property if and only

if A is continuous, that is,

σA(x
∗) := sup

x∈A
〈x∗, x〉 = lim

u∗→x∗
σA(u

∗) ∀x∗ ∈ Rn \ {0}.

Theorem ETZ ([Ernst-Théra-Zalinnescu, JFA, 2005]). Let A be a

closed convex set in a reflexive Banach space. Then A has the strict

separation property if and only if A is slice-continuous (i.e., for every

closed subspace Y of X , A ∩ Y is a continuous set in Y ).
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From the view point of optimization, it should be interesting to consider

whether or not the linear functional x∗ in either (3.7) or (3.8) can attain

its infimum and supremum over A and B, respectively. However, even

in Euclidean space R2, there exist two disjoint closed convex sets A

and B with int(B) 6= ∅ such that they cannot be separated attainably,

namely there exists no y∗ ∈ (R2)∗ \ {0} satisfying

〈y∗, a〉 = inf
x∈A
〈y∗, x〉 ≥ sup

x∈B
〈y∗, x〉 = 〈y∗, b〉 for some (a, b) ∈ A×B.
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Two kinds of attainable separation properties

Definition 3.1. A closed convex set A in a normed space X is said to

have attainable separation property if for every closed convex subset

B of X with int(B) 6= ∅ and A∩ int(B) = ∅ there exist x∗ ∈ X∗ \ {0},
a ∈ A and b ∈ B such that

〈x∗, a〉 = inf
x∈A
〈x∗, x〉 ≥ sup

x∈B
〈x∗, x〉 = 〈x∗, b〉. (3.9)

Definition 3.2. A closed convex set A in a normed space X is said

to have attainable strict separation property if for every closed convex

nonempty subset B of X with A ∩ B = ∅ there exist x∗ ∈ X∗, a ∈ A
and b ∈ B such that

〈x∗, a〉 = inf
x∈A
〈x∗, x〉 > sup

x∈B
〈x∗, x〉 = 〈x∗, b〉. (3.10)

(∗) (3.9)⇐⇒
[
x∗ ∈ N(B, b) ∩ −N(A, a) & 〈x∗, a− b〉 ≥ 0

]
.
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Proposition 3.1. Let A be a bounded closed convex set in a Banach space X .
Then the following statements are equivalent:
(i) A has the attainable separation property.
(ii) A has the attainable strict separation property.
(iii) A has the strict separation property.
(iv) A is weakly compact.

To consider the unbounded case , we adopt the following notion of an asymptotic
hyperplane of A: a hyperplane P(x∗, α) := {x ∈ X : 〈x∗, x〉 = α} with
(x∗, α) ∈ (X∗ \{0})×R is called an asymptotic hyperplane of A if 〈x∗, x〉 ≤ α

for all x ∈ A (i.e., σA(x∗) ≤ α) and there exists a sequence {an} in A such that

lim
n→∞
‖an‖ =∞ and lim

n→∞
d(an,P(x∗, α)) = 0.
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Theorem 3.1. Let X be a reflexive Banach space and A an unbounded closed
convex subset of X . Then the following statements are equivalent:
(i) A has the attainable strict separation property.
(ii) For every closed convex set B in X with A∩B = ∅ there exist a ∈ A, b ∈ B
and x∗ ∈ N(B, b) ∩ −N(A, a) such that ‖x∗‖ = 1 and

〈x∗, a〉 − 〈x∗, b〉 = ‖a− b‖ = d(A,B).

(iii) A has no asymptotic hyperplane and int(A) is nonempty.
(iv) A is continuous and int(A) is nonempty.
(v) A−B is closed for any closed convex set B disjoint with A.

http://192.9.200.1


1

Preliminaries

Fuzzy separation . . .

Convex case

Well solvability of . . .

Home Page

I K �

JJ II

J I

1 30�� 50�

� £

òÑ�¶w«

' 4

ò Ñ

Theorem 3.2. Let X be a Banach space. Then the following statements are
equivalent.
(i) X is reflexive.
(ii) Every closed convex subset of X having no asymptotic hyperplane has the
attainable separation property.
(iii) Every unbounded continuous closed convex subset of X having a nonempty
interior has the attainable strict separation property.
(iv) There exist a closed subspace Y of X with codim(Y ) = 1 and an element e
in X \ Y such that

A(Y, e) := {y + te : (y, t) ∈ Y × R and ‖y‖2 ≤ t} (3.11)

has the attainable separation property.
(v) For any closed subspace Y of X with codim(Y ) = 1 and any element e in
X \ Y , A(Y, e) defined by (3.11) has the attainable strict separation property.
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Proposition 3.2. Let X be a finite-dimensional normed space and let A be a
closed convex nonempty subset of X . Then the following statements are equiv-
alent:
(i) S(A, x∗) is a bounded nonempty set for each x∗ ∈ bar(A) \ {0}.
(ii) A has no asymptotic hyperplane.
(iii) A is continuous.
(iv) A has the attainable strict separation property.
(v) A has the attainable separation property.
(vi) A has the strict separation property.
(vii) A−B is closed for every closed convex subset B of X .
(viii) A − B is closed for every closed convex subset B of X with int(B) 6= ∅
and A ∩B = ∅.
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4 Well solvability of convex optimization
problems

Theorem ETZ2 ([Ernst-Théra-Zalinescu, JFA, 2005]). Let X be a reflexive
Banach space and f : X → R be a nonconstant continuous convex function
such that f(x0) = min

x∈X
f(x) for some x0 ∈ X . Then for any closed convex set A

in X there exists a ∈ A such that f(a) = min
x∈A

f(x) if and only if f−1(−∞, λ]

is slice-continuous for all λ ≥ inf
x∈X

f(x).

Remark. In Theorem ETZ2, the objective f is a fixed continuous convex func-
tion, while the constrained sets are all closed convex sets in the concerned
space.
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Next, we will consider, from a different angle than Theorem ETZ2, a fixed
closed convex set A in a Banach space X such that for every continuous (even
lower semicontinuous) convex function f : X → R with inf

x∈A
f(x) > −∞ the

corresponding optimization problem

PA(f) minimize f(x) subject to x ∈ A

is well solvable in the sense of various well-posedness.

Tychnov’s well-posedness: a proper lower semicontinuous extended-real func-
tion f on a normed space X is said to have the well-posedness property if every
minimizing sequence {xn} of f (i.e. lim

n→∞
f(xn) = inf

x∈X
f(x)) is convergent,

while f is said to have the generalized well-posedness property if every mini-
mizing sequence {xn} of f has a convergent subsequence.

The well-posedness and generalized well-posedness have been recognized to be
useful in optimization and studied extensively.
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Definition 4.1 Given a closed convex set A in a normed linear space X and
a proper lower semicontinuous convex function f : X → R ∪ {+∞} with
inf
x∈A

f(x) > −∞, the corresponding constrained optimization problem PA(f) is

said to be
(i) well-posed-solvable if every minimizing sequence {xn} of PA(f) (i.e.,
{xn} ⊂ A and f(xn)→ inf

x∈A
f(x)) is convergent;

(ii) G-well-posed-solvable if every minimizing sequence of PA(f) has a conver-
gent subsequence;
(iii) W-well-posed-solvable if every minimizing sequence {xn} of PA(f) is
weakly convergent;
(iv) WG-well-posed-solvable if every minimizing sequence of PA(f) has a
weakly convergent subsequence;
(v) boundedly solvable if the solution set S(A, f) := {a ∈ A : f(a) =

inf
x∈A

f(x)} is bounded and nonempty.
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Proposition 4.1 Let A be a closed convex set in a normed linear space
X and let f : X → R ∪ {+∞} be a proper lower semicontinuous
continuous convex function. Then the following statements hold:
(i) PA(f ) is G-well-posed-solvable if and only if the solution set
S(A, f ) is a compact nonempty set and d(xn,S(A, f )) → 0 for ev-
ery minimizing sequence {xn} of PA(f ).
(ii) PA(f ) isWG-well-posed-solvable if and only if S(A, f ) is a weak-
compact nonempty set and every minimizing sequence {xn} of PA(f )
converges to S(A, f ) with respect to the weak topology, that is, for any
weak neighborhood U of 0 there exists N such that xn ∈ S(A, f ) + U

for all n ≥ N .
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The main aims of this talk are to study the following two topics:

(T1) Characterize a given closed convex set A in a Banach space X such that
for every convex continuous function f : X → R with inf

x∈A
f(x) > −∞ the cor-

responding optimization problem PA(f) is well-posed solvable, G-well-posed
solvable orWG-well-posed solvable.

(T2) Find some conditions on a given real-valued continuous convex function
f on a Banach space X such that for every closed convex subset A of X the
corresponding optimization problem PA(f) is solvable or well-posed solvable.
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4.1. Slice property, continuity and differentiability

Let A be a closed convex set in a normed space X . Recall that the support
functional and the bar cone of A are respectively defined by

σA(x∗) := sup
x∈A
〈x∗, x〉 ∀x∗ ∈ X∗

and
bar(A) := dom(σA) = {x∗ ∈ X∗ : σA(x∗) < +∞}.

For x∗ ∈ bar(A) and ε > 0, the corresponding support set and slice of A are
defined as

S(A, x∗) := {x ∈ A : 〈x∗, x〉 = σA(x∗)}

and
S(A, x∗, ε) := {x ∈ A : 〈x∗, x〉 ≥ σA(x∗)− ε}.

It is clear that S(A, x∗) =
⋂
ε>0
S(A, x∗, ε).

http://192.9.200.1


1

Preliminaries

Fuzzy separation . . .

Convex case

Well solvability of . . .

Home Page

I K �

JJ II

J I

1 38�� 50�

� £

òÑ�¶w«

' 4

ò Ñ

Definition 4.2 A closed convex set A in a normed space X is said to have
(i) bounded slice property if for each x∗ ∈ bar(A) \ {0} there exists ε > 0 such
that S(A, x∗, ε) is bounded, and
(ii) strong slice property if lim

ε→0+
diam(S(A, x∗, ε)) = 0 for all x∗ ∈ bar(A)\{0},

where diam(S(A, x∗, ε)) := sup{‖x1 − x2‖ : x1, x2 ∈ S(A, x∗, ε)}.

Lemma 4.1 Let A be a closed convex set in a normed space X . The following
statements hold:
(i) S(A, x∗, ε) ⊂ ∂σA(B(x∗,

√
ε)) +

√
εBX∗∗ ∀(x∗, ε) ∈ bar(A)× (0, +∞),

where BX∗∗ denotes the unit ball of the bidual space X∗∗.
(ii) For any x∗ ∈ bar(A) \ {0} there exist ε0, L0 ∈ (0, +∞) such that

∂σA(B(x∗, ε)) ⊂ S(A, x∗, L0ε)
w∗ ∀ε ∈ (0, ε0).

Consequently lim
ε→0+

diam(∂σA(B(x∗, ε)) = lim
ε→0+

diam(S(A, x∗, ε)) for all x∗ ∈
bar(A) \ {0}.
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Proposition 4.2. Let A be a closed convex set in a normed space X and let
x∗0 ∈ bar(A) \ {0}. Then the following statements are equivalent.
(i) S(A, x∗0, ε) is bounded for all ε ∈ (0, +∞).
(ii) There exists ε0 > 0 such that S(A, x∗0, ε0) is bounded.
(iii) x∗0 ∈ int(bar(A)).
(iv) σA is continuous at x∗0.
(v) There exist ε0, δ0 ∈ (0, +∞) such that

sup

‖x‖ : x ∈
⋃

x∗∈B(x∗0,δ0)

S(A, x∗)

 < +∞.
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Proposition 4.3. Let A be a closed convex set in a finite-dimensional normed
space X and let x∗0 ∈ bar(A) \ {0} be such that the support set S(A, x∗0) is
bounded and nonempty. Then the slice S(A, x∗0, ε) is bounded for all ε > 0, and

lim
ε→0+

sup
x∈S(A,x∗0,ε)

d(x,S(A, x∗0)) = 0.

Consequently, S(A, x∗0) is a singleton if and only if lim
ε→0+

diam(S(A, x∗0, ε)) = 0.

Theorem 4.1 Let A be a closed convex set in a normed space X . Then the
following statements are equivalent:
(i) A is continuous.
(ii) bar(A) \ {0} is open.
(iii) A has the bounded slice property.
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Definition 4.3 A closed convex set A in a normed space X is said to be differen-
tiable if its support functional σA is differentiable at each point of dom(σA)\{0}.

Every closed ball in a Hilbert space is differentiable.
Example 4.1. Let X be a Hilbert space. Then, for any e ∈ X \ {0} and
p ∈ (1, +∞), A(e, p) := {x + te : x ∈ e⊥ & ‖x‖p ≤ t} is differentiable,
where e⊥ = {x ∈ X : 〈x, e〉 = 0}.

Proposition 4.4 Let A be a closed convex set in a normed space X . Then A has
the strong slice property if and only if A is differentiable.
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Recall that A is said to be a Chebychev set (or to have the Chebychev property)
if for each x ∈ X there exists a ∈ A such that d(x,A) = ‖x − a‖. To
characterize further the strong slice property, we adopt the following notion: A
is said to have the S-Chebychev property if for every closed convex set B with
d(A,B) > 0 there exists a unique a ∈ A such that d(a,B) = d(A,B) and
lim
n→∞
‖an − a‖ = 0 for any sequence {an} ⊂ A with lim

n→∞
d(an, B) = d(A,B).

Proposition 4.5 Given a closed convex set A in a Banach space X , the following
statements hold:
(i) A is differentiable if and only if A has the S-Chebychev property.
(ii) If, in addition, int(A) 6= ∅, then A is differentiable if and only if for ev-
ery closed convex set B disjoint with A there exists a unique a ∈ A such that
d(a,B) = d(A,B) and lim

n→∞
‖an − a‖ = 0 for any sequence {an} ⊂ A.
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Proposition 4.6 LetX be a Banach space and Y be a closed subspace ofX such
that codim(Y ) = 1. For e ∈ X \ Y and p ∈ (1, +∞), let

Ap(Y, e) := {y + te : y ∈ Y and ‖y‖p ≤ t}. (4.12)

Then the following statements hold:
(i) Ap(Y, e) has the bounded slice property and int(Ap(Y, e)) 6= ∅.
(ii) If, in addition, X is reflexive and locally uniformly convex, Ap(Y, e) has the
strong slice property.
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4.2. Main Results

For a closed convex set A in a normed spaceX , we adopt the following notation

L(X|A) := {u∗ ∈ X∗ \ {0} : inf
x∈A
〈u∗, x〉 > −∞}.

Let C(X|A) denote the family of all continuous convex functions f : X → R
satisfying inf

x∈A
f(x) > inf

x∈X
f(x).

L(X|A) ⊂ C(X|A).

Lemma 4.2. Let A be a closed convex set in a normed space X . Then, for each
f ∈ C(X|A), there exists u∗f ∈ L(X|A) such that every minimizing sequence of
the convex optimization problem PA(f) is a minimizing sequence of the linear
optimization problem PA(u∗f).
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Theorem 4.2. Let A be a closed convex set in a Banach space X . Then the
following statements are equivalent:
(i) A is differentiable.
(ii) For any u∗ ∈ L(X|A), the corresponding linear optimization problem
PA(u∗) is well-posed-solvable.
(iii) For any f ∈ C(X|A), the corresponding convex optimization problem
PA(f) is well-posed-solvable.

Theorem 4.3 Let A be a closed convex set in a finite dimensional normed space
X . Then the following statements are equivalent:
(i) A is differentiable.
(ii) For any u∗ ∈ L(X|A), the corresponding linear optimization problem
PA(u∗) has a unique solution.
(iii) For every proper lower semicontinuous convex function f : X →
R ∪ {+∞} with inf

x∈A
f(x) > inf

x∈X
f(x), the corresponding convex optimiza-

tion problem PA(f) is well-posed-solvable.
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Theorem 4.4 Let A be a closed convex set in a reflexive Banach space X . Then
the following statements are equivalent:
(i) A is continuous.
(ii) For any u∗ ∈ L(X|A), the corresponding linear optimization problem
PA(u∗) isWG-well-posed-solvable.
(iii) For any f ∈ C(X|A), the corresponding convex optimization problem
PA(f) isWG-well-posed-solvable.

James Theorem ([Ann. Math. 1957] and [Trans. Amer. Math. Soc. 1964]). Let
X be a Banach space X . Then X is reflexive if and only if the closed unit ball
BX is weakly compact if and only if for any bounded closed convex set A ⊂ X

and any x∗ ∈ X∗, the linear optimization problem PA(x∗) is solvable.
Theorem 4.5. Let X be a reflexive Banach space and let A be an unbounded
closed convex subset ofX such that int(A) 6= ∅. ThenA is continuous if and on-
ly if for every proper lower semicontinuous convex function f : X → R∪{+∞}
with inf

x∈A
f(x) > inf

x∈X
f(x), the corresponding convex optimization problem

PA(f) isWG-well-posed-solvable.
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Theorem 4.6. Let A be a closed convex subset of a finite dimensional normed
space X . Then the following statements are equivalent:
(i) A is continuous.
(ii) For each u∗ ∈ L(X|A), the corresponding linear optimization problem
PA(u∗) is boundedly solvable.
(iii) For every proper lower semicontinuous convex function f : X → R ∪
{+∞} with inf

x∈A
f(x) > inf

x∈X
f(x), the corresponding convex optimization prob-

lem PA(f) is G-well-posed-solvable.
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4.3. Differtiabilty and continuity of conjugate functions

Recall the conjugate function f ∗ of f defined by

f ∗(x∗) := sup
x∈X

(〈x∗, x〉 − f(x)) ∀x∗ ∈ X∗.

It is well known that the conjugate function f ∗ is always lower semicontinu-
ous with respect to the weak∗ topology onX∗ and useful in convex optimization.

Theorem 4.7. Let X be a Banach space and f : X → R be a continuous
convex function such that f ∗ is Fréchet differentiable dom(f ∗). Then, for every
closed convex subset A of X with −∞ < inf

x∈A
f(x), the corresponding convex

optimization problem PA(f) is well-posed solvable.
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Theorem 4.8. Let X be a reflexive Banach space and f : X → R be a
continuous convex function such that f ∗ is is continuous on dom(f ∗). Then, for
every closed convex subset A of X with inf

x∈A
f(x) > −∞, the corresponding

optimization problem PA(f) isWG-well-posed solvable.

Proposition 4.7. Let X be a normed space and f : X → R be a continuous
convex function. Then epi(f) is differentiable if and only if f ∗ is Fréchet
differentiable on dom(f ∗).

Proposition 4.8. Let X be a normed space and f : X → R be a continuous
convex function. Then the following statements are equivalent:
(i) epi(f) is continuous.
(ii) f ∗ is continuous on dom(f ∗).
(iii) dom(f ∗) is open.
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