Separation results for disjoint closed sets based on normal cones

Xi Yin Zheng

Department of Mathematics, Yunnan University

1. Preliminaries

- 2. Fuzzy separation theorems for closed sets
- 3. Convex case
- 4. Well solvability of convex optimization problems

1 Preliminaries

Recall that a proper lower semicontinuous function φ on a real Banach space X is Frechet differentiable at $\bar{x} \in \operatorname{dom}(\varphi)$ if there exists $x^* \in X^*$ such that

 $\varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle = o(\|x - \bar{x}\|).$

Frechet subdifferential:

 $\hat{\partial}\varphi(\bar{x}) = \{x^* \in X^*: \varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle \ge o(\|x - \bar{x}\|)\}.$

 $x^* \in \hat{\partial} \varphi(\bar{x}) \Longleftrightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0 \; \text{ s.t.}$

 $\langle x^*, x - \bar{x} \rangle \le \varphi(x) - \varphi(\bar{x}) + \varepsilon ||x - \bar{x}|| \quad \forall x \in B(\bar{x}, \delta).$

$$\varphi(\bar{x}) = \min_{x \in B(\bar{x}, \delta)} \varphi(x) \Longrightarrow 0 \in \hat{\partial} \varphi(\bar{x}).$$

Viscosity subdifferential:

 $\partial^V \varphi(\bar{x}) = \{g'(\bar{x}): \varphi - g \text{ attains its local minimum at } \bar{x}\}.$

If X is a smooth space, then $\partial^V \varphi(\bar{x}) = \hat{\partial} \varphi(\bar{x})$.

Home Page		
标是	亟 页	
••	••	
•	►	
第 <u>3</u> 页	第 <u>3</u> 页共 <u>50</u> 页	
返	回	
退出全	併显示	
关	闭	
退	出	

Proximal subdifferential: $x^* \in \partial^p \varphi(\bar{x}) \iff \exists \sigma, \delta \in (0, +\infty)$ s.t.

 $\langle x^*, x - \bar{x} \rangle \le \varphi(x) - \varphi(\bar{x}) + \sigma \|x - \bar{x}\|^2 \quad \forall x \in B(\bar{x}, \delta).$

Limit subdifferential: $\bar{\partial}\varphi(\bar{x}) := \text{Limsup}_{x \to \bar{x}} \hat{\partial}\varphi(x)$ $x^* \in \bar{\partial}\varphi(\bar{x}) \iff \exists x_n \to \bar{x} \& \exists x_n^* \xrightarrow{w^*} x^* \text{ s.t. } x_n^* \in \hat{\partial}\varphi(x_n) \ (\forall n \in \mathbb{N}).$

Clarke subdifferential: $\partial \varphi(\bar{x}) := \{x^* \in X^* : \langle x^*, h \rangle \le \varphi^{\circ}(\bar{x}, h) \ \forall h \in X\},\$

$$\varphi^{\circ}(\bar{x},h) := \lim_{\varepsilon \to 0^+} \limsup_{x \to f\bar{x}, t \to 0^+} \inf_{v \in B(h,\varepsilon)} \frac{\varphi(x+tv) - \varphi(x)}{t}.$$

Local Lipschitz property of $\varphi \Longrightarrow \varphi^{\circ}(\bar{x}, h) = \limsup_{x \to \bar{x}, t \to 0^+} \frac{\varphi(x+th) - \varphi(x)}{t}$.

Home Page		
标是	亟 页	
••	•• ••	
•	•	
第 <u>4</u> 页	共 <u>50</u> 页	
 返		
退出全	併 显 示	
关	闭	
退	出	

1. $\partial^p \varphi(\bar{x}) \subset \partial^V \varphi(\bar{x}) \subset \hat{\partial} \varphi(\bar{x}) \subset \bar{\partial} \varphi(\bar{x}) \subset \partial \varphi(\bar{x}).$ **2.** If φ is smooth around \bar{x} , then $\hat{\partial} \varphi(\bar{x}) = \partial \varphi(\bar{x}) = \{\varphi'(\bar{x})\}$

3. If φ is smooth around \bar{x} and $x \mapsto \varphi'(x)$ is locally Lipschiz at \bar{x} , then

 $\partial^p \varphi(\bar{x}) = \partial \varphi(\bar{x}) = \{ \varphi'(\bar{x}) \}.$

4. If φ is convex, then

$$\partial^p \varphi(\bar{x}) = \partial \varphi(\bar{x}) = \{ x^* \in X^* : \langle x^*, x - \bar{x} \rangle \le \varphi(x) - \varphi(\bar{x}) \ \forall x \in X \}.$$

5. If $\dim(X) < \infty$ and φ is locally Lipschitz at $\bar{x} \in \operatorname{dom}(\varphi)$, then

 $\partial \varphi(\bar{x}) = \overline{\operatorname{co}} \left\{ \lim_{n \to \infty} \varphi'(x_n) : x_n \to x, \ \varphi \text{ is Frechet differentiable at each } x_n \right\}.$

Theorem I. Let X be a Banach space and $\varphi, \psi : X \to \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions. The following statements hold: (i) dom $(\partial \varphi)$ is dense in dom (φ) . (ii) If ψ is locally Lipschitzat $\bar{x} \in dom(\varphi)$, then

 $\partial(\varphi + \psi)(\bar{x}) \subset \partial\varphi(\bar{x}) + \partial\psi(\bar{x}).$

If $\varphi(x) = -\|x\|$ for all $x \in \ell^1$, then $\operatorname{dom}(\hat{\partial}\varphi) = \operatorname{dom}(\bar{\partial}\varphi) = \emptyset$.

Theorem II. Let X be an Asplund space and let $\varphi, \psi : X \to \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions. The following statements hold: (i) dom $(\hat{\partial}\varphi)$ is dense in dom (φ) .

(ii) If ψ is locally Lipschitz at $\bar{x} \in \text{dom}(\varphi)$, then for any $x^* \in \hat{\partial}(\varphi + \psi)(\bar{x})$ and any $\varepsilon > 0$ there exist $x_1, x_2 \in B(\bar{x}, \varepsilon)$ such that

 $x^* \in \hat{\partial}\varphi(x_1) + \hat{\partial}\psi(x_2) + \varepsilon B_{X^*} \text{ and } |\varphi(x_1) - \varphi(\bar{x})| < \varepsilon$

and so $\bar{\partial}(\varphi + \psi)(\bar{x}) \subset \bar{\partial}\varphi(\bar{x}) + \bar{\partial}\psi(\bar{x}).$ (iii) $\partial\varphi(\bar{x}) = \operatorname{cl}^{w^*}\left(\operatorname{co}\left(\bar{\partial}\varphi(\bar{x}) + \bar{\partial}^{\infty}\varphi(\bar{x})\right)\right).$

Home Page		
标题	标 题 页	
••	••	
	•	
第 <mark>6</mark> 页 :	共 <mark>50</mark> 页	
返	D	
退出全	屏显示	
 ¥	闭	
 	出	

A—a closed set in a Banach space $X, a \in A$.

Bouligand tangent cone:

 $T(A,a) = \{h \in X : \exists t_n \to 0^+ \& \exists h_n \to h \text{ s.t. } a + t_n h_n \in A \ \forall n \in \mathbb{N} \}.$

Clarke tangent cone:

$$T_C(A, a) := \{ h \in X : \quad \forall a_n \xrightarrow{A} a \& \forall s_n \to 0^+ \exists h_n \to h \\ \text{s.t.} \ a_n + s_n h_n \in A \quad \forall n \in \mathbb{N} \}.$$

 $T_C(A,a) \subset T(A,a)$

Clarke normal cone:

 $N_C(A, a) := T_C(A, a)^{\circ} = \{ x^* \in X^* : \langle x^*, h \rangle \le 0 \ \forall h \in T_C(A, a) \}.$

Home Page		
标题	 瓦	
••	44 >>	
	•	
第7页:	共 <mark>50</mark> 页	
返	<u></u>	
退出全	屏显示	
关	闭	
退	出	

Frechet normal cone:

$$\hat{N}(A,a) := \left\{ x^* \in X^* : \limsup_{x \stackrel{A}{\to} a} \frac{\langle x^*, x - a \rangle}{\|x - a\|} \le 0 \right\}$$

If X is an Asplund space, $\{a \in A : \hat{N}(A, a) \neq \{0\}\}$ is dense in bd(A).

Proximal normal cone:

$$\hat{N}^p(A,a) := \left\{ x^* \in X^* : \limsup_{x \to a} \frac{\langle x^*, x - a \rangle}{\|x - a\|^2} < +\infty \right\}$$

If X is a Hilbert space, $x^* \in N^P(A, a) \Leftrightarrow a \in P_A(a + tx^*)$ for some t > 0, and $\{a \in A : N^p(A, a) \neq \{0\}\}$ is dense in bd(A).

Proximal point: a point *a* is called a proximal point of *A* if $a \in P_A(x)$ for some $x \in X \setminus A$.

In 2010, Borwein [1] asked the following "most striking" open question: Is it possible that in every reflexive Banach space, the proximal points on $bd(\Omega)$ are dense in $bd(\Omega)$?

Home	Home Page	
标题	ī 页	
••	••	
	•	
第 <i>8</i> 页	第 <i>8</i> 页共 <i>50</i> 页	
顷	D	
退出全	屏显示	
关	闭	
退	出	

Preliminaries Fuzzy separation . . . Convex case Well solvability of . . .

Home Page	
标是	亙 页
44	••
•	•
第 9页共 50页	
返	
退出全	屏显示
¥	闭
	111
返	ц

Limit normal cone: $\bar{N}(A, a) := \text{Limsup}_{x \to a} \hat{N}(A, x)$

 $x^* \in \bar{N}(A, a) \iff \exists x_n \stackrel{A}{\to} a \& \exists x_n^* \stackrel{w^*}{\to} x^* \text{ s.t. } x_n^* \in \hat{N}(A, x_n) \ (\forall n \in \mathbb{N}).$ $\hat{N}(A, a) \subset \bar{N}(A, a) \subset N_C(A, a).$

If X is an Asplund space, then $N_C(A, a) = \operatorname{cl}^{w^*} (\operatorname{co} (\overline{N}(A, a))).$

 $A \cap B(a,r) = B \cap B(a,r) \Longrightarrow \hat{N}(A,a) = \hat{N}(B,a) \& N_C(A,a) = N_C(B,a).$ $\hat{N}(A,a) = \hat{\partial}\delta_A(a), \ \bar{N}(A,a) = \bar{\partial}\delta_A(a), \ N_C(A,a) = \partial\delta_A(a).$

If A is convex, then

$$T(A, a) = T_C(A, a) = \operatorname{cl}(\mathbb{R}_+(A - a))$$

and

$$\hat{N}(A,a) = N_C(A,a) = \{x^* \in X^* : \langle x^*, a \rangle = \sup_{x \in A} \langle x^*, x \rangle \}.$$

 $\varphi: X \to \mathbb{R} \cup \{+\infty\}$ —a proper lower semicontinuous function

 $\hat{\partial}\varphi(x) = \{x^* \in X^* : (x^*, -1) \in \hat{N}(\operatorname{epi}(\varphi), (x, \varphi(x)))\}$ $\bar{\partial}\varphi(x) = \{x^* \in X^* : (x^*, -1) \in \bar{N}(\operatorname{epi}(\varphi), (x, \varphi(x)))\}$ $\partial\varphi(x) = \{x^* \in X^* : (x^*, -1) \in N_C(\operatorname{epi}(\varphi), (x, \varphi(x)))\},\$

where $epi(\varphi) = \{(x,t) \in X \times \mathbb{R} : \varphi(x) \le t\}.$

Home Page	
标题	瓦
••	••
	•
第 10 页	共 <mark>50</mark> 页
返	
退出全	屏显示
关 关	闭
退	出

2 Fuzzy separation theorems for disjoint closed sets

Extremal point: A common point \bar{x} of closed sets A_1, \dots, A_m in a normed space is called an extremal point of these closed sets if there exist a neighborhood V of \bar{x} and m sequences $x_{1k} \to 0, \dots, x_{mk} \to 0$ such that

$$\bigcap_{i=1}^{m} (A_i - x_{ik}) \cap V = \emptyset \quad \forall k \in \mathbb{N}.$$

Extremal Principle: Let \bar{x} be an extremal point of closed sets A_1, \dots, A_m in an Asplund space X. Then for any $\varepsilon > 0$ there exist $a_i \in A_i \cap B(\bar{x}, \varepsilon)$ such that

$$x_i^* \in \hat{N}(A_i, a_i) + \varepsilon B_{X^*}, \ i = 1, \cdots, m, \ \sum_{i=1}^m x_i^* = 0 \ \text{and} \ \sum_{i=1}^m ||x_i^*|| = 1.$$

Corollary. Let \bar{x} be an extremal point of closed sets A_1, \dots, A_m in an Asplund space X, and suppose that all but one of A_1, \dots, A_m are sequentially normally compact at \bar{x} . Then there exist $x_i^* \in \bar{N}(A_i, \bar{x})$, $i = 1, \dots, m$, such that

 $x_1^* + \dots + x_m^* = 0$ and $||x_1^*|| + \dots + ||x_m^*|| = 1$.

Corollary. Let \bar{x} be an extremal point of closed sets A_1 and A_2 in an Asplund space X, and suppose that A_1 is sequentially normally compact at \bar{x} . Then there exist $x^* \in X^*$ such that

 $||x^*|| = 1$ and $x^* \in \overline{N}(A_1, \overline{x}) \cap -\overline{N}(A_2, \overline{x}).$

If A_1 and A_2 are convex,

$$x^* \in \bar{N}(A_1, \bar{x}) \cap -\bar{N}(A_2, \bar{x}) \iff \langle x^*, \bar{x} \rangle = \sup_{x \in A_1} \langle x^*, x \rangle = \inf_{x \in A_2} \langle x^*, x \rangle.$$

Non-intersection index: For closed sets A_1, \dots, A_m , let

$$\gamma(A_1, \cdots, A_m) := \inf \left\{ \sum_{i=1}^{m-1} \|x_i - x_m\| : x_i \in A_i, i = 1, \cdots, m \right\}.$$

$$\gamma(A_1, A_2) = d(A_1, A_2).$$
$$\bigcap_{i=1}^m A_i \neq \emptyset \Longrightarrow \gamma(A_1, \cdots, A_m) = 0.$$

$$\gamma(A_1, \cdots, A_m) > 0 \Longrightarrow \bigcap_{i=1}^m A_i = \emptyset.$$

Home Page	
标 题 页	
4	
• •	
第 <u>13</u> 页共 50 页	
返回	
退出全展显示	
天 闭	
退出	

Theorem 2.1 ([Zheng-Ng, SIOPT, 2011]). Let A_1, \dots, A_m be closed sets in a Banach space X such that $\bigcap_{i=1}^m A_i = \emptyset$. Let $\varepsilon > 0$ and $a_i \in A_i$ $(1 \le i \le m)$ be such that

$$\sum_{i=1}^{m-1} \|a_i - a_m\| < \gamma(A_1, \cdots, A_m) + \varepsilon.$$

Then, for any $\lambda > 0$, there exist $\tilde{a}_i \in A_i$ and $a_i^* \in N_c(A_i, \tilde{a}_i) + \frac{\varepsilon B_{X^*}}{\lambda}$ such that the following properties hold: (i) $\sum_{i=1}^m \|\tilde{a}_i - a_i\| < \lambda$.

(ii)
$$\max_{1 \le i \le m-1} \|a_i^*\| = 1$$
 and $\sum_{i=1}^m a_i^* = 0$.
(iii) $\sum_{i=1}^{m-1} \langle a_i^*, \tilde{a}_m - \tilde{a}_i \rangle = \sum_{i=1}^{m-1} \|\tilde{a}_i - \tilde{a}_m\|$

Home Page	
标是	亙 页
44	••
•	►
第 <u>14</u> 页	共 <mark>50</mark> 页
返	<u> </u>
退出全	屏显示
关	闭
退	出

Theorem 2.2. Let X be an Asplund space and A_1, \dots, A_m be closed nonempty subsets of X such that $\bigcap_{i=1}^{m} A_i = \emptyset$. Let $\varepsilon > 0$ and $a_i \in A_i$ $(1 \le i \le m)$ be such that

$$\sum_{i=1}^{m-1} \|a_i - a_n\| < \gamma(A_1, \cdots, A_m) + \varepsilon.$$
 (2.1)

Then, for any $\lambda > 0$ and any $\rho \in (0, 1)$ there exist $\tilde{a}_i \in A_i$ and $a_i^* \in \hat{N}(A_i, \tilde{a}_i) + \frac{\varepsilon B_{X^*}}{\lambda}$ $(i = 1, \cdots, m)$ such that the following properties hold: (i) $\sum_{i=1}^m \|\tilde{a}_i - a_i\| < \lambda$. (ii) $\max_{1 \le i \le m-1} \|a_i^*\| = 1$ and $\sum_{i=1}^m a_i^* = 0$. m-1

(iii) $\rho \sum_{i=1}^{m-1} \|\tilde{a}_i - \tilde{a}_m\| \le \sum_{i=1}^{m-1} \langle a_i^*, \tilde{a}_m - \tilde{a}_i \rangle.$

(i) and (ii) of Theorem 2.2 \Longrightarrow Extremal Principle.

Corollary 2.1. Let A and B be closed nonempty sets in a Banach space X such that $A \cap B = \emptyset$. Then, for any $\varepsilon > 0$ there exist $a \in A$, $b \in B$ and $a^* \in X^*$ with $||a^*|| = 1$ such that

$$a^* \in N_c(A, a) \cap \left(-N_c(B, b) + \varepsilon B_{X^*}\right)$$

and

$$||a - b|| = \langle a^*, b - a \rangle < d(A, B) + \varepsilon.$$

Corollary 2.2. Let A be a closed nonempty set in a Banach (resp. Asplund) space X. Then, for any $x \in X \setminus A$ and any $\varepsilon > 0$, there exist $a \in A$ and $a^* \in N_c(A, a)$ (resp. $a^* \in \hat{N}(A, a)$) such that

 $||a^*|| = 1$ and $(1 - \varepsilon)||x - a|| \le \min\{\langle a^*, x - a \rangle, d(x, A)\}.$

Corollary 2.3. Let A and B be closed sets in a Banach (resp. Asplund) space X such that $A \cap B = \emptyset$. Suppose that B is bounded and convex. Then, for any $\varepsilon > 0$, there exist $a \in A$ and $a^* \in N_c(A, a)$ (resp. $a^* \in \hat{N}(A, a)$) such that

 $||a^*|| = 1$ and $d(A, B) - \varepsilon < \inf_{x \in B} \langle a^*, x \rangle - \langle a^*, a \rangle.$

If, in addition, A is convex, then

 $d(A,B) - \varepsilon < \inf_{x \in B} \langle a^*, x \rangle - \max_{x \in A} \langle a^*, x \rangle.$

Home Page	
标题页	
•• ••	
• •	
第 17页共 50页	
退出全屏显示	
关闭	
退出	

Proof of Theorem 2.2. Define $\varphi: X^m \to \mathbb{R} \cup \{+\infty\}$ as follows

$$\varphi(x_1,\cdots,x_m) := \sum_{i=1}^{m-1} \|x_i - x_m\| + \delta_{A_1 \times \cdots \times A_m}(x_1,\cdots,x_m) \quad \forall (x_1,\cdots,x_m) \in X^m.$$

Then φ is a proper lower semicontinuous function on X^m equipped with the ℓ_1 -norm

$$||(x_1, \cdots, x_m)|| := \sum_{i=1}^m ||x_i|| \quad \forall (x_1, \cdots, x_m) \in X^m$$

and (2.1) can be rewritten as

$$\varphi(a_1, \cdots, a_m) < \inf\{\varphi(x_1, \cdots, x_m) : (x_1, \cdots, x_m) \in X^m\} + \varepsilon.$$

Take $\varepsilon' \in (0, \varepsilon)$ such that

$$\varphi(a_1, \cdots, a_m) < \inf\{\varphi(x_1, \cdots, x_m) : (x_1, \cdots, x_m) \in X^m\} + \varepsilon'.$$

Then there exists $\lambda' \in (0, \lambda)$ such that $\frac{\varepsilon'}{\lambda'} < \frac{\varepsilon}{\lambda}$. By the Ekeland variational principle, there exists $(\bar{a}_1, \dots, \bar{a}_m) \in X^m$ such that

Home Page		
标匙	亙 页	
••	44 >>	
•	•	
第 <u>18</u> 页	共 <u>50</u> 页	
返	0	
退出全	屏显示	
关	闭	
退	出	

$$\|(\bar{a}_1, \cdots, \bar{a}_m) - (a_1, \cdots, a_m)\| < \lambda'$$
 (2.2)

and

$$\varphi(\bar{a}_1, \cdots, \bar{a}_m) \le \varphi(x_1, \cdots, x_m) + \frac{\varepsilon'}{\lambda'} \sum_{i=1}^m \|x_i - \bar{a}_i\| \quad \forall (x_1, \cdots, x_m) \in X^m.$$

Hence $(\bar{a}_1, \dots, \bar{a}_m) \in A_1 \times \dots \times A_m$ is a minimizer of $\varphi + \frac{\varepsilon'}{\lambda'} \| \cdot -(\bar{a}_1, \dots, \bar{a}_m)\|_{X^m}$. It follows that $\sigma := \sum_{i=1}^{m-1} \|\bar{a}_i - \bar{a}_m\| > 0$ and

$$0 \in \hat{\partial} \left(\varphi + \frac{\varepsilon'}{\lambda'} \| \cdot -(\bar{a}_1, \cdots, \bar{a}_m) \|_{X^m} \right) (\bar{a}_1, \cdots, \bar{a}_m)$$

= $\hat{\partial} (f + \delta_{A_1 \times \cdots \times A_m}) (\bar{a}_1, \cdots, \bar{a}_m)$ (2.3)

where

$$f(x_1, \cdots, x_m) := \sum_{i=1}^{m-1} \|x_i - x_m\| + \frac{\varepsilon'}{\lambda'} \sum_{i=1}^m \|x_i - \bar{a}_i\| \quad \forall (x_1, \cdots, x_m) \in X^m$$

Home Page		
标是	标 题 页	
44	44 >>	
•	•	
第 19 页	共 <u>50</u> 页	
返	回 回	
退出会	屈見云	
ωщ±	开业小	
关	闭	
退	出	

Preliminaries Fuzzy separation... Convex case Well solvability of...

Thus, by (2.3) and Theorem II, for any $\beta \in \left(0, \min\{\frac{\varepsilon}{\lambda} - \frac{\varepsilon'}{\lambda'}, \lambda - \lambda', \frac{\sigma}{m}\}\right)$ there exist

$$(\bar{x}_1,\cdots,\bar{x}_m),(\tilde{a}_1,\cdots,\tilde{a}_m)\in B_{X^m}((\bar{a}_1,\cdots,\bar{a}_m),\beta)$$
(2.4)

such that

$$0 \in \hat{\partial} f(\bar{x}_1, \cdots, \bar{x}_m) + \hat{\partial} \delta_{A_1 \times \cdots \times A_m}(\tilde{a}_1, \cdots, \tilde{a}_m) + \beta B_{X^*}^m$$

= $\hat{\partial} f(\bar{x}_1, \cdots, \bar{x}_m) + \hat{N}(A_1 \times \cdots \times A_m, (\tilde{a}_1, \cdots, \tilde{a}_m)) + \beta B_{X^*}^m$
= $\hat{\partial} f(\bar{x}_1, \cdots, \bar{x}_m) + \hat{N}(A_1, \tilde{a}_1) \times \cdots \times \hat{N}(A_m, \tilde{a}_m) + \beta B_{X^*}^m.$ (2.5)

Exact Separation

Theorem 2.3. Let A_1, \dots, A_m be closed sets in a Banach space X such that $\bigcap_{i=1}^m A_i = \emptyset$, and suppose that there exist $a_i \in A_i$ $(i = 1, \dots, m)$ such that

$$\sum_{i=1}^{m-1} \|a_i - a_m\| = \gamma(A_1, \cdots, A_m).$$
(2.6)

Then there exist $a_i^* \in X^*$ $(1 \le i \le m)$ with the following properties: (i) $\max_{1 \le i \le m-1} ||a_i^*|| = 1$, $\sum_{i=1}^m a_i^* = 0$ and $a_i^* \in N_c(A_i, a_i)$ $(i = 1, \cdots, m)$. (ii) $\sum_{i=1}^{m-1} \langle a_i^*, a_m - a_i \rangle = \sum_{i=1}^{m-1} ||a_m - a_i||$.

Home Page		
标题	标题页	
••	••	
	•	
第 <u>21</u> 页	共 <u>50</u> 页	
	Щ	
退出全	屏显示	
关	闭	
退	出	

Theorem 2.4. Let A_1, \dots, A_m be closed sets in an Asplund space X such that $\bigcap_{i=1}^{m} A_i = \emptyset$. Further suppose that A_m is compact. Let $\varepsilon > 0$ and $a_i \in A_i$ $(1 \le i \le m)$ be such that

$$\sum_{i=1}^{m-1} \|a_i - a_m\| < \gamma(A_1, \cdots, A_m) + \varepsilon.$$

Then, for any $\lambda > 0$ and any $\rho \in (0, 1)$ there exist $\tilde{a}_i \in A_i$ and $a_i^* \in X^*$ with the following properties:

(i)
$$\sum_{i=1}^{m} \|\tilde{a}_{i} - a_{i}\| < \lambda$$
.
(ii) $\max_{1 \le i \le m-1} \|a_{i}^{*}\| = 1$, $\sum_{i=1}^{n} a_{i}^{*} = 0$ and $a_{i}^{*} \in \hat{N}(A_{i}, \tilde{a}_{i})$ $(i = 1, \cdots, m)$.
(iii) $\rho \sum_{i=1}^{m-1} \|\tilde{a}_{i} - \tilde{a}_{m}\| \le \sum_{i=1}^{m-1} \langle a_{i}^{*}, \tilde{a}_{m} - \tilde{a}_{i} \rangle$.

3 Convex case

Theorem S1. Let A and B be convex sets in a normed space X such that $int(B) \neq \emptyset$ and $A \cap int(B) = \emptyset$. Then there exists $x^* \in X^* \setminus \{0\}$ such that

$$\inf_{x \in A} \langle x^*, x \rangle \ge \sup_{x \in B} \langle x^*, x \rangle.$$
(3.7)

Theorem S2. Let A be a compact convex set in a normed space X and let B be a closed convex set in X such that $A \cap B = \emptyset$. Then there exists $x^* \in X^*$ such that

$$\inf_{x \in A} \langle x^*, x \rangle > \sup_{x \in B} \langle x^*, x \rangle.$$
(3.8)

Strict separation property: a closed convex set A in a normed space X is said to have strict separation property if for every closed convex set B in X with $A \cap B = \emptyset$ there exists $x^* \in X^*$ such that (3.8) holds.

A compact convex set has trivially the strict separation property.

Theorem GW ([Gau-Wong, PAMS, 1996]). Let A be a bounded closed convex subset of a normed space such that $int(A) \neq \emptyset$. Then A has the strict separation property if and only if A is weakly compact.

Theorem GK ([Gale-Klee, Math. Scan., 1959]). Let A be a closed convex set in \mathbb{R}^n . Then A has the strict separation property if and only if A is continuous, that is,

$$\sigma_A(x^*) := \sup_{x \in A} \langle x^*, x \rangle = \lim_{u^* \to x^*} \sigma_A(u^*) \quad \forall x^* \in \mathbb{R}^n \setminus \{0\}.$$

Theorem ETZ ([Ernst-Théra-Zalinnescu, JFA, 2005]). Let A be a closed convex set in a reflexive Banach space. Then A has the strict separation property if and only if A is slice-continuous (i.e., for every closed subspace Y of X, $A \cap Y$ is a continuous set in Y).

From the view point of optimization, it should be interesting to consider whether or not the linear functional x^* in either (3.7) or (3.8) can attain its infimum and supremum over A and B, respectively. However, even in Euclidean space \mathbb{R}^2 , there exist two disjoint closed convex sets Aand B with $int(B) \neq \emptyset$ such that they cannot be separated attainably, namely there exists no $y^* \in (\mathbb{R}^2)^* \setminus \{0\}$ satisfying

$$\langle y^*, a \rangle = \inf_{x \in A} \langle y^*, x \rangle \ge \sup_{x \in B} \langle y^*, x \rangle = \langle y^*, b \rangle$$
 for some $(a, b) \in A \times B$

Two kinds of attainable separation properties

Definition 3.1. A closed convex set A in a normed space X is said to have attainable separation property if for every closed convex subset $B \text{ of } X \text{ with } \operatorname{int}(B) \neq \emptyset \text{ and } A \cap \operatorname{int}(B) = \emptyset \text{ there exist } x^* \in X^* \setminus \{0\},$ $a \in A \text{ and } b \in B \text{ such that}$

$$\langle x^*, a \rangle = \inf_{x \in A} \langle x^*, x \rangle \ge \sup_{x \in B} \langle x^*, x \rangle = \langle x^*, b \rangle.$$
 (3.9)

Definition 3.2. A closed convex set A in a normed space X is said to have attainable strict separation property if for every closed convex nonempty subset B of X with $A \cap B = \emptyset$ there exist $x^* \in X^*$, $a \in A$ and $b \in B$ such that

$$\langle x^*, a \rangle = \inf_{x \in A} \langle x^*, x \rangle > \sup_{x \in B} \langle x^*, x \rangle = \langle x^*, b \rangle.$$
 (3.10)

(*) (3.9) $\iff [x^* \in N(B, b) \cap -N(A, a) \& \langle x^*, a - b \rangle \ge 0].$

Proposition 3.1. Let A be a bounded closed convex set in a Banach space X.
Then the following statements are equivalent:

(i) A has the attainable separation property.
(ii) A has the attainable strict separation property.
(iii) A has the strict separation property.
(iv) A is weakly compact.

To consider the unbounded case, we adopt the following notion of an asymptotic hyperplane of A: a hyperplane $\mathcal{P}(x^*, \alpha) := \{x \in X : \langle x^*, x \rangle = \alpha\}$ with $(x^*, \alpha) \in (X^* \setminus \{0\}) \times \mathbb{R}$ is called an asymptotic hyperplane of A if $\langle x^*, x \rangle \leq \alpha$ for all $x \in A$ (i.e., $\sigma_A(x^*) \leq \alpha$) and there exists a sequence $\{a_n\}$ in A such that

$$\lim_{n \to \infty} \|a_n\| = \infty \text{ and } \lim_{n \to \infty} d(a_n, \mathcal{P}(x^*, \alpha)) = 0.$$

Home	Home Page	
标题	标题页	
••	••	
	•	
第 <u>28</u> 页;	共 <mark>50</mark> 页	
返	回	
退出全	弄显 示	
关	闭	
退	出	

Preliminaries Fuzzy separation... Convex case Well solvability of...

Home	Home Page	
标是	页 页	
· · · · · · · · · · · · · · · · · · ·		
••	••	
	•	
I		
第 <mark>29</mark> 页	共 <mark>50</mark> 页	
返	回	
退出全	屏显示	
关	闭	
退	ж	

Theorem 3.1. Let X be a reflexive Banach space and A an unbounded closed convex subset of X. Then the following statements are equivalent: (i) A has the attainable strict separation property. (ii) For every closed convex set B in X with $A \cap B = \emptyset$ there exist $a \in A$, $b \in B$ and $x^* \in N(B, b) \cap -N(A, a)$ such that $||x^*|| = 1$ and

 $\langle x^*, a \rangle - \langle x^*, b \rangle = ||a - b|| = d(A, B).$

(iii) A has no asymptotic hyperplane and int(A) is nonempty.
(iv) A is continuous and int(A) is nonempty.
(v) A - B is closed for any closed convex set B disjoint with A.

Theorem 3.2. Let X be a Banach space. Then the following statements are equivalent.

(i) X is reflexive.

(*ii*) Every closed convex subset of X having no asymptotic hyperplane has the attainable separation property.

(iii) Every unbounded continuous closed convex subset of X having a nonempty interior has the attainable strict separation property.

(iv) There exist a closed subspace Y of X with $\operatorname{codim}(Y) = 1$ and an element e in $X \setminus Y$ such that

 $A(Y,e) := \{ y + te : (y,t) \in Y \times \mathbb{R} \text{ and } \|y\|^2 \le t \}$ (3.11)

has the attainable separation property.

(v) For any closed subspace Y of X with $\operatorname{codim}(Y) = 1$ and any element e in $X \setminus Y$, A(Y, e) defined by (3.11) has the attainable strict separation property.

Home Page	
标题页	
44 >>	
• •	
第 <u>30</u> 页共 50 页	
返回	
退业全屋日子	
医山主併亚小	
关闭	
退出	

Proposition 3.2. Let X be a finite-dimensional normed space and let A be a closed convex nonempty subset of X. Then the following statements are equivalent:

(i) $\mathcal{S}(A, x^*)$ is a bounded nonempty set for each $x^* \in bar(A) \setminus \{0\}$.

- (ii) A has no asymptotic hyperplane.
- (iii) A is continuous.
- (iv) A has the attainable strict separation property.
- (v) A has the attainable separation property.
- (vi) A has the strict separation property.
- (vii) A B is closed for every closed convex subset B of X.

(viii) A - B is closed for every closed convex subset B of X with $int(B) \neq \emptyset$ and $A \cap B = \emptyset$.

4 Well solvability of convex optimization problems

Theorem ETZ2 ([Ernst-Théra-Zalinescu, JFA, 2005]). Let X be a reflexive Banach space and $f : X \to \mathbb{R}$ be a nonconstant continuous convex function such that $f(x_0) = \min_{x \in X} f(x)$ for some $x_0 \in X$. Then for any closed convex set A in X there exists $a \in A$ such that $f(a) = \min_{x \in A} f(x)$ if and only if $f^{-1}(-\infty, \lambda]$ is slice-continuous for all $\lambda \ge \inf_{x \in X} f(x)$.

Remark. In Theorem ETZ2, the objective f is a fixed continuous convex function, while the constrained sets are all closed convex sets in the concerned space.

Next, we will consider, from a different angle than Theorem ETZ2, a fixed closed convex set A in a Banach space X such that for every continuous (even lower semicontinuous) convex function $f: X \to \mathbb{R}$ with $\inf_{x \in A} f(x) > -\infty$ the corresponding optimization problem

$\mathcal{P}_A(f)$ minimize f(x) subject to $x \in A$

is well solvable in the sense of various well-posedness.

Tychnov's well-posedness: a proper lower semicontinuous extended-real function f on a normed space X is said to have the well-posedness property if every minimizing sequence $\{x_n\}$ of f (i.e. $\lim_{n\to\infty} f(x_n) = \inf_{x\in X} f(x)$) is convergent, while f is said to have the generalized well-posedness property if every minimizing sequence $\{x_n\}$ of f has a convergent subsequence.

The well-posedness and generalized well-posedness have been recognized to be useful in optimization and studied extensively.

Definition 4.1 Given a closed convex set A in a normed linear space X and a proper lower semicontinuous convex function $f : X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > -\infty$, the corresponding constrained optimization problem $\mathcal{P}_A(f)$ is said to be

(i) well-posed-solvable if every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ (i.e., $\{x_n\} \subset A \text{ and } f(x_n) \to \inf_{x \in A} f(x)$) is convergent;

(ii) *G*-well-posed-solvable if every minimizing sequence of $\mathcal{P}_A(f)$ has a convergent subsequence;

(iii) W-well-posed-solvable if every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ is weakly convergent;

(iv) WG-well-posed-solvable if every minimizing sequence of $\mathcal{P}_A(f)$ has a weakly convergent subsequence;

(v) boundedly solvable if the solution set $S(A, f) := \{a \in A : f(a) = \inf_{x \in A} f(x)\}$ is bounded and nonempty.

Proposition 4.1 Let A be a closed convex set in a normed linear space X and let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous continuous convex function. Then the following statements hold: (i) $\mathcal{P}_A(f)$ is \mathcal{G} -well-posed-solvable if and only if the solution set $\mathcal{S}(A, f)$ is a compact nonempty set and $d(x_n, \mathcal{S}(A, f)) \to 0$ for every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$.

(ii) $\mathcal{P}_A(f)$ is $\mathcal{W}\mathcal{G}$ -well-posed-solvable if and only if $\mathcal{S}(A, f)$ is a weakcompact nonempty set and every minimizing sequence $\{x_n\}$ of $\mathcal{P}_A(f)$ converges to $\mathcal{S}(A, f)$ with respect to the weak topology, that is, for any weak neighborhood U of 0 there exists N such that $x_n \in \mathcal{S}(A, f) + U$ for all $n \geq N$.

The main aims of this talk are to study the following two topics:

(T1) Characterize a given closed convex set A in a Banach space X such that for every convex continuous function $f: X \to \mathbb{R}$ with $\inf_{x \in A} f(x) > -\infty$ the corresponding optimization problem $\mathcal{P}_A(f)$ is well-posed solvable, \mathcal{G} -well-posed solvable or \mathcal{WG} -well-posed solvable.

(T2) Find some conditions on a given real-valued continuous convex function f on a Banach space X such that for every closed convex subset A of X the corresponding optimization problem $\mathcal{P}_A(f)$ is solvable or well-posed solvable.

4.1. Slice property, continuity and differentiability

Let A be a closed convex set in a normed space X. Recall that the support functional and the bar cone of A are respectively defined by

$$\sigma_A(x^*) := \sup_{x \in A} \langle x^*, x \rangle \quad \forall x^* \in X^*$$

and

$$bar(A) := dom(\sigma_A) = \{x^* \in X^* : \sigma_A(x^*) < +\infty\}.$$

For $x^* \in bar(A)$ and $\varepsilon > 0$, the corresponding support set and slice of A are defined as

$$\mathcal{S}(A, x^*) := \{ x \in A : \langle x^*, x \rangle = \sigma_A(x^*) \}$$

and

$$\mathcal{S}(A, x^*, \varepsilon) := \{ x \in A : \langle x^*, x \rangle \ge \sigma_A(x^*) - \varepsilon \}.$$

It is clear that $\mathcal{S}(A, x^*) = \bigcap_{\varepsilon > 0} \mathcal{S}(A, x^*, \varepsilon).$

Home Page		
标是	标 题 页	
••	••	
•	•	
筆 37 页	共 50 页	
35 07 52	X 00 92	
返	回	
退出全	屏显示	
¥	臼	
<u>×</u>	101	
退	出	

Definition 4.2 A closed convex set A in a normed space X is said to have (i) bounded slice property if for each $x^* \in bar(A) \setminus \{0\}$ there exists $\varepsilon > 0$ such that $S(A, x^*, \varepsilon)$ is bounded, and (ii) strong slice property if $\lim_{\varepsilon \to 0^+} diam(S(A, x^*, \varepsilon)) = 0$ for all $x^* \in bar(A) \setminus \{0\}$,

where diam $(\mathcal{S}(A, x^*, \varepsilon)) := \sup\{\|x_1 - x_2\| : x_1, x_2 \in \mathcal{S}(A, x^*, \varepsilon)\}.$

Lemma 4.1 Let A be a closed convex set in a normed space X. The following statements hold: (i) $S(A, x^*, \varepsilon) \subset \partial \sigma_A(B(x^*, \sqrt{\varepsilon})) + \sqrt{\varepsilon}B_{X^{**}} \quad \forall (x^*, \varepsilon) \in bar(A) \times (0, +\infty),$ where $B_{X^{**}}$ denotes the unit ball of the bidual space X^{**} .

(ii) For any $x^* \in bar(A) \setminus \{0\}$ there exist $\varepsilon_0, L_0 \in (0, +\infty)$ such that

 $\partial \sigma_A(B(x^*,\varepsilon)) \subset \overline{\mathcal{S}(A,x^*,L_0\varepsilon)}^{w^*} \quad \forall \varepsilon \in (0, \ \varepsilon_0).$

Consequently $\lim_{\varepsilon \to 0^+} \operatorname{diam}(\partial \sigma_A(B(x^*, \varepsilon))) = \lim_{\varepsilon \to 0^+} \operatorname{diam}(\mathcal{S}(A, x^*, \varepsilon))$ for all $x^* \in \operatorname{bar}(A) \setminus \{0\}$.

Proposition 4.2. Let A be a closed convex set in a normed space X and let $x_0^* \in bar(A) \setminus \{0\}$. Then the following statements are equivalent. (i) $S(A, x_0^*, \varepsilon)$ is bounded for all $\varepsilon \in (0, +\infty)$. (ii) There exists $\varepsilon_0 > 0$ such that $S(A, x_0^*, \varepsilon_0)$ is bounded. (iii) $x_0^* \in int(bar(A))$. (iv) σ_A is continuous at x_0^* . (v) There exist $\varepsilon_0, \delta_0 \in (0, +\infty)$ such that

$$\sup\left\{\|x\|: x \in \bigcup_{x^* \in B(x_0^*, \delta_0)} \mathcal{S}(A, x^*)\right\} < +\infty.$$

Proposition 4.3. Let A be a closed convex set in a finite-dimensional normed space X and let $x_0^* \in bar(A) \setminus \{0\}$ be such that the support set $S(A, x_0^*)$ is bounded and nonempty. Then the slice $S(A, x_0^*, \varepsilon)$ is bounded for all $\varepsilon > 0$, and

 $\lim_{\varepsilon \to 0^+} \sup_{x \in \mathcal{S}(A, x_0^*, \varepsilon)} d(x, \mathcal{S}(A, x_0^*)) = 0.$

Consequently, $S(A, x_0^*)$ is a singleton if and only if $\lim_{\varepsilon \to 0^+} \operatorname{diam}(S(A, x_0^*, \varepsilon)) = 0$.

Theorem 4.1 Let A be a closed convex set in a normed space X. Then the following statements are equivalent:
(i) A is continuous.
(ii) bar(A) \ {0} is open.
(iii) A has the bounded slice property.

Home	Home Page	
标期		
1/1/ 42	2 93	
44	••	
	•	
第 <mark>40</mark> 页	共 <mark>50</mark> 页	
`E		
1/2	Щ	
退出全	屏显示	
	,=	
天	[7]	
退	出	

Definition 4.3 A closed convex set A in a normed space X is said to be differentiable if its support functional σ_A is differentiable at each point of dom $(\sigma_A) \setminus \{0\}$.

Every closed ball in a Hilbert space is differentiable.

Example 4.1. Let X be a Hilbert space. Then, for any $e \in X \setminus \{0\}$ and $p \in (1, +\infty)$, $A(e, p) := \{x + te : x \in e^{\perp} \& ||x||^p \le t\}$ is differentiable, where $e^{\perp} = \{x \in X : \langle x, e \rangle = 0\}$.

Proposition 4.4 Let A be a closed convex set in a normed space X. Then A has the strong slice property if and only if A is differentiable.

MARK UNIVERSIT

Preliminaries Fuzzy separation... Convex case Well solvability of...

Recall that A is said to be a Chebychev set (or to have the Chebychev property) if for each $x \in X$ there exists $a \in A$ such that d(x, A) = ||x - a||. To characterize further the strong slice property, we adopt the following notion: A is said to have the S-Chebychev property if for every closed convex set B with d(A, B) > 0 there exists a unique $a \in A$ such that d(a, B) = d(A, B) and $\lim_{n \to \infty} ||a_n - a|| = 0$ for any sequence $\{a_n\} \subset A$ with $\lim_{n \to \infty} d(a_n, B) = d(A, B)$.

Proposition 4.5 *Given a closed convex set A in a Banach space X, the following statements hold:*

(i) A is differentiable if and only if A has the S-Chebychev property. (ii) If, in addition, $int(A) \neq \emptyset$, then A is differentiable if and only if for every closed convex set B disjoint with A there exists a unique $a \in A$ such that d(a, B) = d(A, B) and $\lim_{n \to \infty} ||a_n - a|| = 0$ for any sequence $\{a_n\} \subset A$. **Proposition 4.6** Let X be a Banach space and Y be a closed subspace of X such that $\operatorname{codim}(Y) = 1$. For $e \in X \setminus Y$ and $p \in (1, +\infty)$, let

 $A_p(Y, e) := \{ y + te : y \in Y \text{ and } \|y\|^p \le t \}.$ (4.12)

Then the following statements hold:

(i) $A_p(Y, e)$ has the bounded slice property and $int(A_p(Y, e)) \neq \emptyset$. (ii) If, in addition, X is reflexive and locally uniformly convex, $A_p(Y, e)$ has the strong slice property.

Home Page		
标题	标 题 页	
•••		
•	•	
É 43 页	<u> # 50</u> 页	
× 0+ tk	<i>y</i> v <i>v y</i>	
返	回	
退出全	屏显示	
关	闭	
退	出	

4.2. Main Results

For a closed convex set A in a normed space X, we adopt the following notation

 $\mathfrak{L}(X|A) := \{ u^* \in X^* \setminus \{0\} : \inf_{x \in A} \langle u^*, x \rangle > -\infty \}.$

Let $\mathfrak{C}(X|A)$ denote the family of all continuous convex functions $f: X \to \mathbb{R}$ satisfying $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$.

 $\mathfrak{L}(X|A) \subset \mathfrak{C}(X|A).$

Lemma 4.2. Let A be a closed convex set in a normed space X. Then, for each $f \in \mathfrak{C}(X|A)$, there exists $u_f^* \in \mathfrak{L}(X|A)$ such that every minimizing sequence of the convex optimization problem $\mathcal{P}_A(f)$ is a minimizing sequence of the linear optimization problem $\mathcal{P}_A(u_f^*)$.

Home Page		
标 题 页		
44 >>		
< →		
第 <u>44</u> 页共 <u>50</u>	页	
返回		
退出全屏显	示	
关闭		
退 出		

Theorem 4.2. Let A be a closed convex set in a Banach space X. Then the following statements are equivalent:

(*i*) A is differentiable.

(ii) For any $u^* \in \mathfrak{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is well-posed-solvable.

(iii) For any $f \in \mathfrak{C}(X|A)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is well-posed-solvable.

Theorem 4.3 Let A be a closed convex set in a finite dimensional normed space X. Then the following statements are equivalent:

(*i*) A is differentiable.

(ii) For any $u^* \in \mathfrak{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ has a unique solution.

(iii) For every proper lower semicontinuous convex function $f : X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is well-posed-solvable.

Theorem 4.4 Let A be a closed convex set in a reflexive Banach space X. Then the following statements are equivalent:

(i) A is continuous.

(ii) For any $u^* \in \mathfrak{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is \mathcal{WG} -well-posed-solvable.

(iii) For any $f \in \mathfrak{C}(X|A)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is \mathcal{WG} -well-posed-solvable.

James Theorem ([Ann. Math. 1957] and [Trans. Amer. Math. Soc. 1964]). Let X be a Banach space X. Then X is reflexive if and only if the closed unit ball B_X is weakly compact if and only if for any bounded closed convex set $A \subset X$ and any $x^* \in X^*$, the linear optimization problem $\mathcal{P}_A(x^*)$ is solvable. Theorem 4.5. Let X be a reflexive Banach space and let A be an unbounded closed convex subset of X such that $int(A) \neq \emptyset$. Then A is continuous if and only if for every proper lower semicontinuous convex function $f: X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is \mathcal{WG} -well-posed-solvable.

Preliminaries Fuzzy separation... Convex case Well solvability of...

Home Page		
标是	标题页	
••	44 >>	
	•	
第 <mark>47</mark> 页	共 50 页	
返	回	
退出全	屏显示	
 ¥	闭	
退	出	

Theorem 4.6. Let A be a closed convex subset of a finite dimensional normed space X. Then the following statements are equivalent:

(i) A is continuous.

(ii) For each $u^* \in \mathfrak{L}(X|A)$, the corresponding linear optimization problem $\mathcal{P}_A(u^*)$ is boundedly solvable.

(iii) For every proper lower semicontinuous convex function $f : X \to \mathbb{R} \cup \{+\infty\}$ with $\inf_{x \in A} f(x) > \inf_{x \in X} f(x)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is \mathcal{G} -well-posed-solvable.

4.3. Differtiability and continuity of conjugate functions

Recall the conjugate function f^* of f defined by

 $f^*(x^*) := \sup_{x \in X} (\langle x^*, x \rangle - f(x)) \quad \forall x^* \in X^*.$

It is well known that the conjugate function f^* is always lower semicontinuous with respect to the weak* topology on X^* and useful in convex optimization.

Theorem 4.7. Let X be a Banach space and $f : X \to \mathbb{R}$ be a continuous convex function such that f^* is Fréchet differentiable dom (f^*) . Then, for every closed convex subset A of X with $-\infty < \inf_{x \in A} f(x)$, the corresponding convex optimization problem $\mathcal{P}_A(f)$ is well-posed solvable.

Theorem 4.8. Let X be a reflexive Banach space and $f : X \to \mathbb{R}$ be a continuous convex function such that f^* is is continuous on dom (f^*) . Then, for every closed convex subset A of X with $\inf_{x \in A} f(x) > -\infty$, the corresponding optimization problem $\mathcal{P}_A(f)$ is \mathcal{WG} -well-posed solvable.

Proposition 4.7. Let X be a normed space and $f : X \to \mathbb{R}$ be a continuous convex function. Then epi(f) is differentiable if and only if f^* is Fréchet differentiable on $dom(f^*)$.

Proposition 4.8. Let X be a normed space and $f : X \to \mathbb{R}$ be a continuous convex function. Then the following statements are equivalent: (i) epi(f) is continuous. (ii) f^* is continuous on $dom(f^*)$. (iii) $dom(f^*)$ is open.

References

- [1] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- [2] E. ERNST, M. THÉRA AND C. ZALINESCUC, Slice-continuous sets in reflexive Banach spaces: convex constrained optimization and strict convex separation, J. Fucnt. Anal., 223(2005), pp.179-203.
- [3] D. GALE AND V. KLEE, *Continuous convex sets*, Math. Scan., 7(1959), pp.379-391.
- [4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer-Verlag, New York, 2006.
- [5] B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc., 348 (1996), pp. 1235-1280.
- [6] X. Y. Zheng and K. F. Ng, A unified separation theorem for closed sets in a Banach space and optimimality conditions for vector optimization, SIAM J. Optim., 21 (2011), pp.886-911.
- [7] X. Y. ZHENG, Attainable separation property and asymptotic hyperplane for a closed convex set in a normed space, J. Math. Anal. Appl., 248(2020).

