人员 > 科研教学系列 > 洪杰梁

洪杰梁

助理教授  

  • 简历
  • 科研
  • 教学
  • 发表论著

教育背景


2017.9--2021.11  加拿大不列颠哥伦比亚大学,获数学博士学位
2015.9--2017.8  加拿大不列颠哥伦比亚大学,获数学硕士学位
2012.9--2015.7  北京大学,获天文学(双学位)学士学位
2011.9--2015.7  北京大学,获数学学士学位


工作经历


2023.6   至今     南方科技大学,数学系,助理教授
2021.9--2023.5  以色列理工学院,博士后

研究工作


概率论与随机过程:超过程,随机偏微分方程,渗流,SIR传染病模型等

发表文章及预印本


[9] Jieliang Hong and Leonid Mytnik. Exceptional times for the instantaneous propagation of superprocess.  Math Arxiv, 2311.13757, (2023). 43 pages.


[8] Jieliang Hong. Rescaled SIR epidemic processes converge to super-Brownian motion in four or more dimensions.  Math Arxiv, 2309.08926, (2023). 80 pages.

[7] Jieliang Hong.  A lower bound for p_c in range-R bond percolation in four, five and six dimensions. Math Arxiv, 2307.01466, (2023). 34 pages. 


[6] Jieliang Hong. An upper bound for p_c in range-R bond percolation in two and three dimensions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 59 (2023), 1259-1341.


[5] Jieliang Hong. An exit measure construction of the total local time of super-Brownian motion.  Electronic Communications in Probability. 26 (2021), 1 - 9. 

[4] Jieliang Hong. On the  boundary local time measure of super-Brownian motion. Electronic Journal of Probability.  25 (2020), paper no. 106, 66 pp.

[3] Jieliang Hong, Leonid Mytnik and Edwin Perkins. On the topological boundary of the range of super-Brownian motion .  Annals of Probability.  48 (2020), no. 3, 1168--1201, 34 pages. 

[2] Jieliang Hong. Improved Hölder continuity near the boundary of one-dimensional super-Brownian motion. Electronic Communications in Probability. 24 (2019), paper no. 28, 12 pp. 

[1] Jieliang Hong.  Renormalization of local times of super-Brownian motion.  Electronic Journal of Probability. 23 (2018), paper no. 109, 45 pp.


研究生招生


欢迎对概率论【注:纯理论证明】研究感兴趣的同学报考硕士、博士研究生,或者申请博士后职位。申请材料请发送至:hongjl@sustech.edu.cn



研究工作


概率论与随机过程:超过程,随机偏微分方程,渗流,SIR传染病模型等


代表著作及预印本


[9] Jieliang Hong and Leonid Mytnik. Exceptional times for the instantaneous propagation of superprocess.  Math Arxiv,2311.13757, (2023). 43 pages. 


[8] Jieliang Hong. Rescaled SIR epidemic processes converge to super-Brownian motion in four or more dimensions.  Math Arxiv, 2309.08926, (2023). 80 pages.

[7] Jieliang Hong.  A lower bound for p_c in range-R bond percolation in four, five and six dimensions. Math Arxiv, 2307.01466, (2023). 34 pages. 


[6] Jieliang Hong. An upper bound for p_c in range-R bond percolation in two and three dimensions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 59 (2023), 1259-1341.


[5] Jieliang Hong. An exit measure construction of the total local time of super-Brownian motion.  Electronic Communications in Probability. 26 (2021), 1 - 9. 


[4] Jieliang Hong. On the  boundary local time measure of super-Brownian motion. Electronic Journal of Probability.  25 (2020), paper no. 106, 66 pp.


[3] Jieliang Hong, Leonid Mytnik and Edwin Perkins. On the topological boundary of the range of super-Brownian motion .  Annals of Probability.  48 (2020), no. 3, 1168--1201, 34 pages. 


[2] Jieliang Hong. Improved Hölder continuity near the boundary of one-dimensional super-Brownian motion. Electronic Communications in Probability. 24 (2019), paper no. 28, 12 pp. 


[1] Jieliang Hong.  Renormalization of local times of super-Brownian motion.  Electronic Journal of Probability. 23 (2018), paper no. 109, 45 pp.

2023 秋季学期

概率论 (本科生)

[6] Jieliang Hong. An upper bound for p_c in range-R bond percolation in two and three dimensions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 59 (3) 1259 - 1341, (2023).
[5] Jieliang Hong. An exit measure construction of the total local time of super-Brownian motion.  Electronic Communications in Probability. 26 (2021), 1 - 9. 
[4] Jieliang Hong. On the  boundary local time measure of super-Brownian motion. Electronic Journal of Probability.  25 (2020), paper no. 106, 66 pp.
[3] Jieliang Hong, Leonid Mytnik and Edwin Perkins. On the topological boundary of the range of super-Brownian motion .  Annals of Probability.  48 (2020), no. 3, 1168--1201, 34 pages. 
[2] Jieliang Hong. Improved Hölder continuity near the boundary of one-dimensional super-Brownian motion. Electronic Communications in Probability. 24 (2019), paper no. 28, 12 pp. 
[1] Jieliang Hong.  Renormalization of local times of super-Brownian motion.  Electronic Journal of  Probability. 23 (2018), paper no. 109, 45 pp.