研究领域
• 非线性椭圆及抛物类型的反应扩散方程及方程组的解的定性研究
• 生物数学尤其是群体遗传学以及生态学中的数学模型
教育背景
• 2005.09-2010.06 博士 明尼苏达大学 数学学院 美国
• 2002.09-2005.07 硕士 清华大学 数学科学系 北京
• 1998.09-2002.07 学士 清华大学 数学科学系 北京
工作经历
长期
• 2021.12-现在 副教授 南方科技大学 数学系
• 2015.06-2021.11 Tenure-Track助理教授 南方科技大学 数学系
• 2014.08-2015.06 Tenure-Track助理教授 南方科技大学 金融数学与金融工程系
• 2013.08-2014.08 博士后 奥地利维也纳大学 数学系
• 2010.08-2013.05 访问助理教授 美国伍斯特理工学院 数学科学系
短期
• 2013.05-2013.06 访问学者 上海华东师范大学 偏微分方程中心
• 2012.12-2013.01 访问学者 美国芝加哥大学 生态与进化系
发表文章
• Yantao Wang, Linlin Su*, A semilinear interface problem arising from population genetics, J. Differential Equations, doi:10.1016/j.jde.2021.11.017.
• Jingyu Li, Linlin Su*, Xuefeng Wang, Yantao Wang, Bulk-surface coupling: derivation of two models, J. Differential Equations 289 (2021), 1-34.
• Kimie Nakashima, LinLin Su*, Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics, J. Differential Equations 269 (2020), 4643-4682.
• Yantao Wang, Linlin Su*, Monotone and nonmonotone clines with partial panmixia across a geographical barrier, Discrete Contin. Dyn. Syst. 40 (2020), 4019-4037.
• Thomas Nagylaki, Linlin Su*, Todd F. Dupond, Uniqueness and multiplicity of clines in an environmental pocket, Theor. Popul. Biol. 130 (2019), 106-131.
• Linlin Su, King-Yeung Lam, Reinhard Bürger*, Two-locus clines maintained by diffusion and recombination in a heterogeneous environment, J. Differential Equations 266 (2019), 7909-7947.
• Josef Hofbauer, Linlin Su*, Global stability of spatially homogeneous equilibria in migration-selection models, SIAM J. Appl. Math. 76 (2016), 578-597.
• Josef Hofbauer, Linlin Su*, Global stability in diallelic migration–selection models, J. Math. Anal. Appl. 428 (2015), 677-695.
• Linlin Su*, Thomas Nagylaki, Clines with directional selection and partial panmixia in an unbounded unidimensional habitat, Discrete Contin. Dyn. Syst. 35 (2015), 1697-1741.
• Thomas Nagylaki*, Linlin Su, Ian Alevy, Todd F. Dupont, Clines with partial panmixia in an environmental pocket, Theor. Popul. Biol. 95 (2014), 24-32.
• Yuan Lou, Thomas Nagylaki, Linlin Su*, An integro-PDE model from population genetics, J. Differential Equations 254 (2013), 2367-2392.
• Linlin Su, Roger Lui*, Advance of advantageous genes for a multiple-allele population genetics model, J. Theoret. Biol. 315 (2012), 1-8.
• Linlin Su, Roger Lui*, Patterns for four-allele population genetics model, Theor. Popul. Biol. 81 (2012), 273-283.
• Yuan Lou, Wei-Ming Ni, Linlin Su, An indefinite nonlinear diffusion problem in population genetics, II: stability and multiplicity, Discrete Contin. Dyn. Syst. 27 (2010), 643-655.
• Kimie Nakashima, Wei-Ming Ni, Linlin Su, An indefinite nonlinear diffusion problem in population genetics, I: existence and limiting profiles, Discrete Contin. Dyn. Syst. 27 (2010), 617-641.
• Haizhong Li*, Hui Ma, Linlin Su, Lagrangian spheres in the 2-dimensional complex space forms, Israel J. Math. 166 (2008), 113-124.
• Haizhong Li*, Linlin Su, The gaps in the spectrum of the Schrödinger operator, PDEs, submanifolds and affine differential geometry, 91-102, Banach Center Publ. 69, Polish Acad. Sci., Warsaw, 2005.