人员 > 教学系列 > 王融

王融

副教授  

0755-88018780

  • 简历
  • 科研
  • 教学
  • 发表论著

个人主页


研究领域:

◆ 计算流体力学

◆ 偏微分方程数值解

◆ 科学计算软件

工作经历:

◆ 2002年9月--2004年8月,加拿大Dalhousie大学,博士后

◆ 2004年9月--2008年6月,加拿大Saskatchewan大学,博士后

◆ 2008年7月—2013年8月,武汉大学教授

◆ 2013年9月--今,南方科技大学副教授

学习经历:

◆ 1996年7月,中国科学技术大学数学系计算数学专业,理学学士

◆ 1999年8月,加拿大Dalhousie大学,理学硕士

◆ 2002年8月,加拿大Dalhousie大学,博士

所获荣誉:

◆ 获得楚天学子称号 (2009)

代表文章:

[1] A comparison of adaptive software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, J. Comput. Appl. Math., Vol 169, 2004, pp. 127-150.

[2] A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, Appl. Numer. Math., Vol 50, 2004, pp. 239-260.

[3] BACOL: B-spline Adaptive COLlocation software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, ACM Trans. Math. Softw., Vol 30, 2004, pp. 454-470.

[4] Linear instability of the fifth-order WENO method, Rong Wang and Raymond J. Spiteri*, SIAM J. Numer. Anal., Vol 45, 2007, pp. 1871-1901.

[5] Algorithm 874: BACOLR: Spatial and Temporal Error Control Software for PDEs based on High Order Adaptive Collocation, Rong Wang, Patrick Keast and Paul H. Muir*, ACM Trans. Math. Softw, Volume 34, Issue 3, 2008, Article 15.

[6] Observations on the fifth-order WENO method with non-uniform meshes, Rong Wang, Hui Feng, and Raymond J. Spiteri*, Appl. Math. Comput., Vol. 196, 2008, pp. 433-447.

[7] A New Mapped Weighted Essentially Non-oscillatory Scheme, Hui Feng, Fuxing Hu, and Rong Wang*, J. Sci. Comput., Vol 51, 2012, pp. 449--473.

[8] An improved mapped weighted essentially non-oscillatory scheme, Hui Feng, Cong Huang, and Rong Wang*, Appl. Math. Comput.,Vol 232, 2014, pp. 453-468.

[9] A new family of mapped weighted essentially non-oscillatory method using rational mapping functions, Rong Wang*, Hui Feng and Cong Huang, J. Sci. Comput., to appear.

[10] An adaptive mesh method for 1D hyperbolic conservation Laws, Fuxing Hu*, Rong Wang, Xueyong Chen, and Hui Feng, Appl. Numer. Math.,Vol 91,2015,pp. 11-25.

[11] A modified fifth-order WENOZ method for hyperbolic conservation laws, Fuxing Hu*, Rong Wang, and Xueyong Chen, J. Comput. Appl. Math., to appear.