往期活动

Harmonic functions with polynomial growth on manifolds with nonnegative Ricci curvature

Abstract 

Suppose (M, g) is an n-dimensional noncompact Riemannian manifold with nonnegative Ricci curvature, and let h k(M) be the dimension of the space of harmonic functions with polynomial growth of growth order at most k. In this talk, I will first review the previous works in estimating h k(M), then I will introduce my recent results on h k(M) in the case that M has maximal volume growth and the tangent cone at infinity of M is unique. 


报告人简介:黄显涛,中山大学副教授。2014 年于中山大学取得博士学位,之后在清华大学的丘成桐数学中心从事博士后 2 年。主要研究方向为 Ricci 曲率有下界的流形和度量空间,几何流及其应用,等周问题等。在 Math. Ann、J. Geom. Anal. 等期刊发表论文十余篇。